Growing diversity and complexity of on-chip photonic applications requires rapid design of components with stateof-the-art operation metrics. Here, we demonstrate a highly flexible and efficient method for designing several classes of compact and low-loss integrated optical devices. By leveraging a datadriven approach, we represent devices in the form of cascaded eigenmode scattering matrices, through a data-driven eigenmode expansion method. We perform electromagnetic computations using parallel data processing techniques, demonstrating simulation of individual device responses in tens of milliseconds with physical accuracies matching 3D-FDTD. We then couple these simulations with nonlinear optimization algorithms to design silicon-based waveguide tapers, power splitters, and waveguide crossings with state-of-the-art performance and near-lossless operation. These three sets of devices highlight the broad computational efficiency of the design methodology shown, and the applicability of the demonstrated data-driven eigenmode expansion approach to a wide set of photonic design problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.