The Mn-Fe layered double hydroxide using chloride in the interlayer anion was successfully synthesized using chemical co-precipitation methods. The Mn-Fe LDH was then applied as adsorbent for arsenic removal from synthetic acid mine drainage. The adsorbent characterizations of SEM and XRD analysis showed that the Mn-Fe LDH had many different functional groups and a high specific surface area for the adsorption processes. The morphological structure of Mn-Fe LDH by the SEM-EDS analysis method shows a round shape structure with a particle size of about 1 μm, and the XRF analysis method shows that the Mn and Fe elements dominate more than other components. Batch adsorption experimental conducted using the Mn-Fe LDH with the interlayer anion of chloride as an adsorbent to study the effect of contact time, equilibrium pH, and temperature on the arsenic removal. The Mn-Fe LDH showed high adsorption uptake capacity and selectivity for the arsenic in the synthetic acid mine drainage. The adsorption and ion exchange between interlayer chloride anions in Mn-Fe LDH and As (V) solution was the main adsorption mechanism. Therefore, the Mn-Fe LDH can be used as an adsorbent in water and wastewater treatment. In contrast, this research has the potential to be processed and developed into advanced materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.