Genome-wide association studies (GWASs) have identified several susceptibility loci for bipolar disorder (BD) and shown that the genetic architecture of BD can be explained by polygenicity, with numerous variants contributing to BD. In the present GWAS (Phase I/II), which included 2964 BD and 61 887 control subjects from the Japanese population, we detected a novel susceptibility locus at 11q12.2 (rs28456, P=6.4 × 10−9), a region known to contain regulatory genes for plasma lipid levels (FADS1/2/3). A subsequent meta-analysis of Phase I/II and the Psychiatric GWAS Consortium for BD (PGC-BD) identified another novel BD gene, NFIX (Pbest=5.8 × 10−10), and supported three regions previously implicated in BD susceptibility: MAD1L1 (Pbest=1.9 × 10−9), TRANK1 (Pbest=2.1 × 10−9) and ODZ4 (Pbest=3.3 × 10−9). Polygenicity of BD within Japanese and trans-European-Japanese populations was assessed with risk profile score analysis. We detected higher scores in BD cases both within (Phase I/II) and across populations (Phase I/II and PGC-BD). These were defined by (1) Phase II as discovery and Phase I as target, or vice versa (for ‘within Japanese comparisons’, Pbest~10−29, R2~2%), and (2) European PGC-BD as discovery and Japanese BD (Phase I/II) as target (for ‘trans-European-Japanese comparison,’ Pbest~10−13, R2~0.27%). This ‘trans population’ effect was supported by estimation of the genetic correlation using the effect size based on each population (liability estimates~0.7). These results indicate that (1) two novel and three previously implicated loci are significantly associated with BD and that (2) BD ‘risk’ effect are shared between Japanese and European populations.
Genome-wide association studies (GWASs) have identified >100 susceptibility loci for schizophrenia (SCZ) and demonstrated that SCZ is a polygenic disorder determined by numerous genetic variants but with small effect size. We conducted a GWAS in the Japanese (JPN) population (a) to detect novel SCZ-susceptibility genes and (b) to examine the shared genetic risk of SCZ
across (East Asian [EAS] and European [EUR]) populations and/or that of trans-diseases (SCZ, bipolar disorder [BD], and major depressive disorder [MDD]) within EAS and between EAS and EUR (transdiseases/populations). Among the discovery GWAS subjects (JPN-SCZ GWAS: 1940 SCZ cases and 7408 controls) and replication dataset (4071 SCZ cases and 54 479 controls),both comprising JPN populations, 3 novel susceptibility loci for SCZ were identified: SPHKAP (P best = 4.1 × 10 −10 ), SLC38A3 (P best = 5.7 × 10 −10 ), and CABP1-ACADS (P best = 9.8 × 10 −9 ). Subsequent meta-analysis between our samples and those of the Psychiatric GWAS Consortium (PGC; EUR samples) and another study detected 12 additional susceptibility loci. Polygenic risk score (PRS) prediction revealed a shared genetic risk of SCZ across populations (P best = 4.0 × 10 −11 ) and between SCZ and BD in the JPN population (P ~ 10 −40 ); however, a lower variance-explained was noted between JPN-SCZ GWAS and PGC-BD or MDD within/across populations. Genetic correlation analysis supported the PRS results; the genetic correlation between JPN-SCZ and PGC-SCZ was ρ = 0.58, whereas a similar/ lower correlation was observed between the trans-diseases (JPN-SCZ vs JPN-BD/EAS-MDD, r g = 0.56/0.29) or trans-diseases/populations (JPN-SCZ vs PGC-BD/MDD, ρ = 0.38/0.12). In conclusion, (a) Fifteen novel loci are possible susceptibility genes for SCZ and (b) SCZ "risk" effect is shared with other psychiatric disorders even across populations.
Our results suggest that HLA-B*59:01 is a risk factor for CIAG in the Japanese population. Furthermore, if our model is true, the results suggest that rechallenging certain CIG subjects with clozapine may not be always contraindicated.
Recent genome-wide association studies (GWASs) of schizophrenia (SCZ) identified several susceptibility genes and suggested shared genetic components between SCZ and bipolar disorder (BD). We conducted a genetic association study of single nucleotide polymorphisms (SNPs) selected according to previous SCZ GWAS targeting psychotic disorders (SCZ and BD) in the Japanese population. Fifty-one SNPs were analyzed in a two-stage design using first-set screening samples (all SNPs: 1,032 SCZ, 1,012 BD, and 993 controls) and second-set replication samples ("significant" SNPs in the first-set screening analysis: 1,808 SCZ, 821 BD, and 2,321 controls). We assessed allelic associations between the selected SNPs and the three phenotypes (SCZ, BD, and "psychosis" [SCZ + BD]). Nine SNPs revealed nominal association signals for all comparisons (P(uncorrected) < 0.05), of which two SNPs located in the major histocompatibility complex region (rs7759855 in zinc finger and SCAN domain containing 31 [ZSCAN31] and rs1736913 in HLA-F antisense RNA1 [HLA-F-AS1]) were further assessed in the second-set replication samples. The associations were confirmed for rs7759855 (P(corrected) = 0.026 for psychosis; P(corrected) = 0.032 for SCZ), although the direction of effect was opposite to that in the original GWAS of the Chinese population. Finally, a meta-analysis was conducted using our two samples and using our data and data from Psychiatric GWAS Consortium (PGC), which have shown the same direction of effect. SNP in ZSCAN31 (rs7759855) had the strongest association with the phenotypes (best P = 6.8 × 10(-5) for psychosis: present plus PGC results). These data support shared risk SNPs between SCZ and BD in the Japanese population and association between MHC and psychosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.