This report presents a facile and efficient methodology for the fabrication of plasticized polyvinyl alcohol (PVA):chitosan (CS) polymer electrolytes using a solution cast technique. Regarding characterizations of electrical properties and structural behavior, the electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) are used, respectively. Crystalline peaks appear in the XRD pattern of the PVA:CS:NH4I while no peaks can be seen in the XRD pattern of plasticized systems. The degree of crystallinity is calculated for all the samples from the deconvoluted area of crystalline and amorphous phases. Considering the EIS measurements, the most conductive plasticized system shows a relatively high conductivity of (1.37 × 10−4) S/cm, which is eligible for applications in energy storage devices. The analysis of the EIS spectra reveals a decrease in bulk resistance which indicates an increase in free ion carriers. The electrical equivalent circuit (EEC) model is used in the analysis of EIS plots. Dielectric properties are modified with the addition of glycerol as a plasticizer. It is proved that the addition of glycerol as a plasticizer lowers ion association. It also shows, at the low-frequency region, a large value of a dielectric constant which is correlated with electrode polarization (EP). The distribution of relaxation times is associated with conducting ions.
Polymer blend electrolytes based on poly(vinyl alcohol):chitosan (PVA:CS) incorporated with various quantities of ammonium iodide were prepared and characterized using a range of electrochemical, structural and microscopic techniques. In the structural analysis, X-ray diffraction (XRD) was used to confirm the buildup of the amorphous phase. To reveal the effect of dopant addition on structural changes, field-emission scanning electron microscope (FESEM) was used. The protrusions of salt aggregates with large quantity were seen at the surface of the formed films at 50 wt.% of the added salt. The nature of the relationship between conductivity and dielectric properties was shown using electrochemical impedance spectroscopy (EIS). The EIS spectra were fitted with electrical equivalent circuits (EECs). It was observed that both dielectric constant and dielectric loss were high in the low-frequency region. For all samples, loss tangent and electric modulus plots were analyzed to become familiar with the relaxation behavior. Linear sweep voltammetry (LSV) and transference number measurement (TNM) were recorded. A relatively high cut-off potential for the polymer electrolyte was obtained at 1.33 V and both values of the transference number for ion (tion) and electronic (telec) showed the ion dominant as charge carrier species. The TNM and LSV measurements indicate the suitability of the samples for energy storage application if their conductivity can be more enhanced.
In this study, plasticized films of polyvinyl alcohol (PVA): chitosan (CS) based electrolyte impregnated with ammonium thiocyanate (NH4SCN) were successfully prepared using a solution-casting technique. The structural features of the electrolyte films were investigated through the X-ray diffraction (XRD) pattern. The enrichment of the amorphous phase with increasing glycerol concentration was confirmed by observing broad humps. The electrical impedance spectroscopy (EIS) portrays the improvement of ionic conductivity from 10−5 S/cm to 10−3 S/cm upon the addition of plasticizer. The electrolytes incorporated with 28 wt.% and 42 wt.% of glycerol were observed to be mainly ionic conductor as the ionic transference number measurement (TNM) was found to be 0.97 and 0.989, respectively. The linear sweep voltammetry (LSV) investigation indicates that the maximum conducting sample is stable up to 2 V. An electrolyte with the highest conductivity was used to make an energy storage electrical double-layer capacitor (EDLC) device. The cyclic voltammetry (CV) plot depicts no distinguishable peaks in the polarization curve, which means no redox reaction has occurred at the electrode/electrolyte interface. The fabricated EDLC displays the initial specific capacitance, equivalent series resistance, energy density, and power density of 35.5 F/g, 65 Ω, 4.9 Wh/kg, and 399 W/kg, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.