BackgroundAedes-borne arboviruses have emerged as an important public health problem worldwide and, in Mozambique, the number of cases and its geographical spread have been growing. However, information on the occurrence, distribution and ecology of Aedes aegypti and Ae. albopictus mosquitoes remain poorly known in the country.MethodsBetween March and April 2016, a cross-sectional study was conducted in 32 districts in Mozambique to determine the distribution and breeding sites of Ae. aegypti and Ae. albopictus. Larvae and pupae were collected from a total of 2,807 water-holding containers using pipette, dipper, funnel and sweeping procedures, depending on the container type and location. Both outdoor and indoor water-holding containers were inspected. The immature forms were reared to adults and the identifications of the mosquito species was carried out with a stereomicroscope using a taxonomic key.ResultsAedes aegypti was found in every district sampled, while Ae. albopictus was only found in Moatize district, situated in Tete Province in the central part of the country. Six hundred and twenty-eight of 2,807 (22.4%) containers were positive for Ae. aegypti but only one (0.03%) was positive for Ae. albopictus. The Container Index (CI) of Aedes was highest in densely populated suburban areas of the central region (260/604; 43.0%), followed by suburban areas in northern areas (228/617; 36.9%) whilst the lowest proportion was found in urbanized southern areas (140/1586; 8.8%). The highest CI of Aedes was found in used tires (448/1268; 35.3%), cement tanks (20/62; 32.3%) and drums (21/95; 22.1%).ConclusionData from our study showed that Ae. aegypti is present nation-wide, since it occurred in every sampled district, whilst Ae. albopictus had a limited distribution. Therefore, the risk of transmission of dengue and chikungunya is likely to have been underestimated in Mozambique. This study highlights the need for the establishment of a national entomological surveillance program for Aedes spp. in Mozambique in order to gain a better understanding about vector bionomics and to support the development of informed effective vector control strategies.
BackgroundOne of the best ways to control the transmission of malaria is by breaking the vector-human link, either by reducing the effective population size of mosquitoes or avoiding infective bites. Reducing house entry rates in endophagic vectors by obstructing openings is one simple way of achieving this. Mosquito netting has previously been shown to have this effect. More recently different materials that could also be used have come onto the market. Therefore, a pilot study was conducted to investigate the protective effect of three types of material against Anopheles funestus and Anopheles gambiae s.l entry into village houses in Mozambique when applied over the large opening at the gables and both gables and eaves.MethodsA two-step intervention was implemented in which the gable ends of houses (the largest opening) were covered with one of three materials (four year old mosquito bed nets; locally purchased untreated shade cloth or deltamethrin-impregnated shade cloth) followed by covering both gable ends and eaves with material. Four experimental rounds (each of three weeks duration), from four houses randomly assigned to be a control or to receive one of the three intervention materials, were undertaken from March to August 2010 in the village of Furvela in southern Mozambique. Mosquito entry rates were assessed by light-trap collection and the efficacy of the different materials was determined in terms of incidence rate ratio (IRR), obtained through a Generalized Estimating Equations (GEE), of mosquito entry in a treated house compared to the untreated (control) house.ResultsAltogether 9,692 An. funestus and 1,670 An. gambiae s.l. were collected. Houses treated with mosquito netting or the untreated shade cloth had 61.3% [IRR = 0.39 (0.32-0.46); P <0.0001] and 70% [IRR = 0.30 (0.25 – 0.37); P <0.001] fewer An. funestus in relation to untreated houses, but there was no difference in An. funestus in houses treated with the deltamethrin-impregnated shade cloth [IRR = 0.92 (0.76 –1.12); P = 0.4] compared to untreated houses. Houses treated with mosquito netting reduced entry rates of An. gambiae s.l, by 84% [IRR = 0.16 (0.10 – 0.25); P <0.001], whilst untreated shade cloth reduced entry rates by 69% [IRR = 0.31 (0.19 –0.53); P <0.001] and entry rates were reduced by 76% [IRR = 0.24 (0.15 0.38); P <0.001] in houses fitted with deltamethrin-impregnated shade cloth.
BackgroundLong-lasting insecticide-treated nets (LLINs) are one of the main methods used for controlling malaria transmission in Mozambique. The proliferation of several types of LLINs and the re-emergence of insecticide resistance in the local vector populations poses challenges to the local malaria control programme on selecting suitable insecticide-based vector control products. Therefore, this study evaluated the insecticide susceptibility and bio-efficacy of selected new LLINs against wild populations of Anopheles funestus sensu lato and A. gambiae s.l. from Northern and Central Mozambique. The study also investigated whether the insecticide contents on the LINNs fabrics were within the WHOPES recommended target range.MethodsThe susceptibility of 2–5 day old wild female A. funestus and A. gambiae sensu stricto against the major classes of insecticides used for vector control, viz: deltamethrin (0.05 %), permethrin (0.75 %), propoxur (0.1 %), bendiocarb (0.1 %) and DDT (4 %), was determined using WHO cylinder susceptibility tests. WHO cone bioassays were conducted to determine the bio-efficacy of both pyrethroid–only LLINs (Olyset®, Permanet 2.0®, NetProtect® and Interceptor®) and, Permanet 3.0® a combination LLIN against A. funestus s.s, from Balama, Mocuba and Milange districts, respectively. The bio-efficacy of LLINs against the insectary-susceptible A. arabiensis (Durban strain) was assessed, as well. Untreated bed net swatches were used as negative controls. Chemical analyses, by high performance liquid chromatography, were undertaken to assess whether the insecticide contents on the LLINs fabrics fell within recommended target dose ranges. The frequency of kdr gene mutations was determined from a random sample of A. gambiaes.s. from both WHO susceptibility and cone bioassay experiments.ResultsAnopheles funestus from Balama district showed resistance to deltamethrin and possible resistance to permethrin, propoxur and bendiocarb, whilst A. gambiae from Mocuba district was susceptible to deltamethrin, bendiocarb and propoxur. There were no kdr mutants found in the sample of 256 A. gambiae tested. Overall, 186 LLIN swatches were tested. Mosquitoes exposed to Olyset® had the lowest knockdown (±standard error) and mortality rate (±standard error) in all studied sites regardless of vectors species tested. Permanet 3.0 showed the highest bio-efficacy independent of vector species tested and level of insecticide resistance detected. All types of LLINs effectively killed susceptible A. arabiensis Durban strain. The insecticide content of Olyset® and Permanet 2.0® was higher than the target dose but NetProtect® had a lower insecticide content than the target dose.ConclusionThe study shows evidence of considerable heterogeneity in both insecticide susceptibility and the level of bio-efficacy of commonly available types of LLINs against wild A. funestus and A. gambiae from Balama, Mocuba and Milange districts, located in north and centre of Mozambique. The findings suggest that vector control approaches combining di...
The possible effect of moonlight on the biting behaviour of mosquitoes in southern Mozambique, in particular that of Anopheles funestus (Diptera: Culicidae), a primary vector of malaria, was investigated by comparing catches indoors and outdoors using CDC light traps and 'Furvela' tent traps, respectively, for 35 consecutive nights, from 9 September to 15 October 2008. Collections were separated into three 4-hourly samples each night. A total of 17 591 mosquitoes belonging to nine species were collected, 6747 in light traps and 10 844 in tent traps. Anopheles funestus (n = 7634) and Mansonia africana (n = 4859) were the most abundant species. Fluctuations in temperature and humidity were the two environmental variables associated with changes in relative abundance of mosquitoes. Most An. funestus were collected indoors, with the majority collected in the first 4 h of the night. This was most evident on nights when moonlight was present in the early part of the night. A total of 3488 An. funestus were dissected for gonotrophic age determination. Parous rates did not change with lunar phase, but estimated oviposition cycle length was significantly shorter on nights when moonlight was present at the time of oviposition. Moonlight at dusk did not, however, affect the proportion of newly emerged insects with mating plugs collected. Outdoor transmission of malaria, especially on moonlit nights, remains a problem for control programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.