Transpulmonary pressure and the mechanical stresses of breathing modulate many essential cell functions in the lung via mechanotransduction. We review how mechanical factors could influence the pathogenesis of emphysema. Although the progression of emphysema has been linked to mechanical rupture, little is known about how these stresses alter lung remodeling. We present possible new directions and an integrated multiscale view that may prove useful in finding solutions for this disease.
In scleroderma (systemic sclerosis, SSc), persistent activation of myofibroblast leads to severe skin and organ fibrosis resistant to therapy. Increased mechanical stiffness in the involved fibrotic tissues is a hallmark clinical feature and a cause of disabling symptoms. Myocardin Related Transcription Factor-A (MRTF-A) is a transcriptional co-activator that is sequestered in the cytoplasm and translocates to the nucleus under mechanical stress or growth factor stimulation. Our objective was to determine if MRTF-A is activated in the disease microenvironment to produce more extracellular matrix in progressive SSc. Immunohistochemistry studies demonstrate that nuclear translocation of MRTF-A in scleroderma tissues occurs in keratinocytes, endothelial cells, infiltrating inflammatory cells, and dermal fibroblasts, consistent with enhanced signaling in multiple cell lineages exposed to the stiff extracellular matrix. Inhibition of MRTF-A nuclear translocation or knockdown of MRTF-A synthesis abolishes the SSc myofibroblast enhanced basal contractility and synthesis of type I collagen and inhibits the matricellular profibrotic protein, connective tissue growth factor (CCN2/CTGF). In MRTF-A null mice, basal skin and lung stiffness was abnormally reduced and associated with altered fibrillar collagen. MRTF-A has a role in SSc fibrosis acting as a central regulator linking mechanical cues to adverse remodeling of the extracellular matrix.
Metallic stents coated with a polyurethane emulsion containing plasmid DNA were implanted in rabbit iliac arteries to evaluate transgene delivery and expression in the vessel wall. The expression of the plasmid-encoded marker genes, b-galactosidase, luciferase and green fluorescence protein (GFP), were evaluated at 7 days after implantation. In all cases, plasmid transfer was confined to the vessel wall at the site of stent implantation, plasmid DNA was not observed in vessel segments immediately proximal or distal to the stent and dissemination of plasmid DNA to lung, liver or spleen was not observed. Expression of transgenes occurred only in vessel segments in contact with the stent and analysis of the GFP expression pattern revealed a high frequency of marker protein-positive cells occurring at or near the luminal surface. The extent of transgene expression was dependent upon the quantity of DNA loaded onto the stent and no signal was detected in vessel segments that received polymer-coated stents lacking plasmid DNA. Of significance, colocalization studies identified transgene expression not only in vascular smooth muscle cells but also in macrophages. Hence, polymer-coated stents provide a new capability for transgene delivery to immune cells that are believed to contribute to the development of in-stent restenosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.