Fluorescence tumor imaging using exogenous fluorescent tumor‐targeting agents has potential to improve early tumor detection. The fluorescent contrast agent indocyanine green (ICG) is used in medical diagnostics. The aim of the present study is to investigate the tumor imaging capability and the imaging mechanism of i.v. administered ICG in a mouse model of colitis‐associated colon cancer. To do this, an azoxymethane/dextran sodium sulfate‐induced colon cancer mouse model was used. Ex vivo imaging experiments were carried out 1 hour after i.v. injection of ICG. The ICG fluorescence was observed in the colon tumor tissues, with sufficient tumor to normal tissue ratio, correlating with tumor malignancy. In the tumor tissues, ICG fluorescence was localized in the vascular interstitial tissue. Immunofluorescence microscopy revealed that tumor cells formed tight junctions normally, suggesting an inability of tumor cellular uptake of ICG. In contrast, tumor tissues increased the CD31‐immunoreactive endothelial cell area, and accumulated stromal cells immunoreactive for COX‐2 and tumor cell population immunoreactive for inducible nitric oxide synthase. In vivo vascular permeability assay revealed that prostaglandin E2 promoted the endothelial cell permeability of ICG. In conclusion, our data indicated that fluorescence contrast‐enhanced imaging following i.v. administered ICG can be applied to the detection of colon tumors in a mouse colitis‐associated colon cancer model. The tumor tissue preference of ICG in the present model can be attributed to the enhanced vascular leakage of ICG involving inflammatory mediators, such as COX‐2 and inducible nitric oxide synthase, in conjunction with increased tumor vascularity.
Mineralocorticoid receptor (MR)/NADPH oxidase (NOX) signaling is involved in the development of obesity, insulin resistance, and renal diseases; however, the role of this signaling on steatotic preneoplastic liver lesions is not fully elucidated. We determined the effects of the MR antagonist potassium canrenoate (PC) on MR/NOX signaling in hepatic steatosis and preneoplastic glutathione S-transferase placental form (GST-P)-positive liver foci. Rats were subjected to a two-stage hepatocarcinogenesis model and fed with basal diet or high fat diet (HFD) that was co-administered with PC alone or in combination with the antioxidant alpha-glycosyl isoquercitrin (AGIQ). PC reduced obesity and renal changes (basophilic tubules that expressed MR and p22phox) but did not affect blood glucose tolerance and non-alcoholic fatty liver disease activity score (NAS) in HFD-fed rats. However, the drug increased the area of GST-P-positive liver foci that expressed MR and p22phox as well as increased expression of NOX genes (p22phox, Poldip2, and NOX4). PC in combination with AGIQ had the potential of inhibiting the effects of PC on the area of GST-P-positive liver foci and the effects were associated with increasing expression of an anti-oxidative enzyme (Catalase). The results suggested that MR/NOX signaling might be involved in development of preneoplastic liver foci and renal basophilic changes in HFD-fed rats; however, the impacts of PC were different in each organ.
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive deposition of droplets in hepatocytes. Patients with NAFLD can be at risk for nonalcoholic steatohepatitis, which can lead to hepatocellular carcinoma. Autophagy is a cellular pathway that is crucial for survival and homeostasis, and which protects against pathophysiological changes like obesity and cancer. We determined the expression of autophagy markers in preneoplastic hepatic lesions and the effects of an autophagy repressor chloroquine (CQ) or inducer amiodarone (AM) in a steatosis-related hepatocarcinogenesis model. Male F344 rats were fed a control diet or high fat diet (HFD), and subjected to initiation and promotion steps with N-nitrosodiethylamine injection at week 0 and a partial hepatectomy at week 3. Several HFD-fed rats were administered 0.1% CQ and 0.5% AM in their drinking water during week 2 and 8. CQ and AM did not improve HFD-induced obesity. AM, but not CQ, significantly decreased the number of glutathione S-transferase placental form-positive preneoplastic liver foci in the liver. Autophagosome markers LC3 and the LC3-binding protein p62 were heterogeneously expressed in the preneoplastic foci. CQ might inhibit autophagy by significantly increased p62/LC3 ratio, while AM might have a potential of inducing autophagy by showing an increased gene expression of the autophagy regulator, Atg5. These results suggest that preneoplastic lesions express autophagosome markers and that AM might decrease steatosis-related early hepatocarcinogenesis by potentially inducing autophagy in HFD-fed rats, while inhibition of autophagy by CQ did not alter the hepatocarcinogenesis. However, an immunohistochemical trial revealed a technical limitation in detecting autophagosome markers because there were variations in each preneoplastic lesion.
Aluminum (Al) is neurotoxic to adults and also to infants. In this study, we investigated the developmental exposure effect of AlCl3 on postnatal hippocampal neurogenesis. Pregnant mice were administered 0-, 900-, or 1800-ppm AlCl3 via drinking water from gestational day 6 to postnatal day (PND) 21, with their offspring examined on PND 21 and PND 77. On PND 21, GFAP-immunoreactive (+) neural stem cells (NSCs) and p21Cip1/Waf1+ cells were decreased in number in the subgranular zone at 900 and ≥900 ppm, respectively. Pcna transcript level examined at 1800 ppm was decreased in the dentate gyrus. These results suggest induction of compromised cell quiescence that caused impaired self-renewal capacity of NSCs accompanying slowing down of cell cycling, which ultimately resulted in exhaustion of the NSC pool. At 1800 ppm, Reelin+ hilar GABAergic interneurons were also decreased, suggesting a contribution to the NSC reduction. At this dose, TBR2+ or DCX+ progenitor and immature granule cells and PVALB+ interneurons were increased. Moreover, COX-2+ granule cells were increased at ≥900 ppm. These results suggest facilitation of transient progenitor cell proliferation and differentiation during exposure. Moreover, TUNEL+ or Morin-stained granule cells were increased, together with Casp12 transcript upregulation, suggesting induction of Al accumulation-related endoplasmic reticulum stress-mediated granule cell apoptosis. Transcript expression changes on cholinergic and glutamatergic signals and synaptic plasticity suggested contribution to disruptive neurogenesis. The NSC-targeting effects sustained through the adult stage despite no sustained Al-accumulation. These results suggest that developmental AlCl3-exposure irreversibly affects postnatal hippocampal neurogenesis involving multiple functions in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.