It is widely known that IL-4 and IL-13 act on various kinds of cells, including B cells, resulting in enhancement of proliferation, class switching to IgE and expression of several surface proteins. These functions are important for the recognition of the various antigens in B cells and are known to be involved in the pathogenesis of allergic diseases. However, it has not been known whether IL-4/IL-13 is involved in the metabolism of various kinds of xenobiotics including 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD), and it remains undetermined whether TCDD, an environmental pollutant, influences IgE production in B cells, exaggerating allergic reactions. We identified IL-4- or IL-13-inducible genes in a human Burkitt lymphoma cell line, DND-39, using microarray technology, in which the AHR gene was included. The AHR gene product, the aryl hydrocarbon receptor (AhR), was induced by IL-4 in both mouse and human B cells in a STAT6-dependent manner. IL-4 alone had the ability to translocate the induced AhR to the nuclei. TCDD, a ligand for AhR, rapidly degraded the induced AhR by the proteasomal pathway, although IL-4-activated AhR sustained its expression. AhR activated by IL-4 caused expression of a xenobiotic-metabolizing gene, CYP1A1, and TCDD synergistically acted on the induction of this gene by IL-4. However, the induction of AhR had no effect on IgE synthesis or CD23 expression. These results indicate that the metabolism of xenobiotics would be a novel biological function of IL-4 and IL-13 in B cells, whereas TCDD is not involved in IgE synthesis in B cells.
Indoxyl sulfate (IS) is a representative uremic toxin that accumulates in the blood of patients with chronic kidney disease (CKD). In addition to the involvement in the progression of CKD, a recent report indicates that IS suppresses hypoxia-inducible factor (HIF)-dependent erythropoietin (EPO) production, suggesting that IS may also contribute to the progression of renal anemia. In this report, we provide evidence that aryl hydrocarbon receptor (AhR) mediates IS-induced suppression of HIF activation and subsequent EPO production. In HepG2 cells, IS at concentrations similar to the blood levels in CKD patients suppressed hypoxia- or cobalt chloride-induced EPO mRNA expression and transcriptional activation of HIF. IS also induced AhR activation, and AhR blockade resulted in abolishment of IS-induced suppression of HIF activation. The HIF transcription factor is a heterodimeric complex composed of HIF-α subunits (HIF-1α and HIF-2α) and AhR nuclear translocator (ARNT). IS suppressed nuclear accumulation of the HIF-α-ARNT complex accompanied by an increase of the AhR-ARNT complex in the nucleus, implying the involvement of interactions among AhR, HIF-α, and ARNT in the suppression mechanism. In rats, oral administration of indole, a metabolic precursor of IS, inhibited bleeding-induced elevation of renal EPO mRNA expression and plasma EPO concentration and strongly induced AhR activation in the liver and renal cortex tissues. Collectively, this study is the first to elucidate the detailed mechanism by which AhR plays an indispensable role in the suppression of HIF activation by IS. Hence, IS-induced activation of AhR may be a potential therapeutic target for treating renal anemia.
The objective of this study was to determine the optimum dialyzer jacket structure and hollow-fiber dialysis membrane, both of which are indispensable factors for achieving high dialysis performance, by clarifying the relationship between the dialysis performance and the flow of dialysate and blood in a hollow-fiber dialyzer. We evaluated the clearance, dialysate, and blood flow for four commercially available hollow-fiber dialyzers, namely, the APS-15S, APS-15SA, TS-1.6UL, and CX-1.6U. To evaluate dialysate and blood flow, we measured the residence-time distribution of dialysate and blood flow of these dialyzers by the pulse-response method. We also determined the clearances of urea, creatinine, vitamin B(12), and lysozyme to evaluate the dialysis performance of these dialyzers. While the baffle and taper structures allow effective supply of dialysate into the dialyzer jacket, the hollow-fiber shape, inner diameter, and packing density significantly influence the dialysate flow. In dialyzers with long taper-holding slits, the slit area is a key design parameter for achieving optimum dialysate flow. Similarly, the blood flow is significantly influenced by the structure of the inflowing and outflowing blood ports at the header of a dialyzer, and the shape and inner diameter of the hollow fibers. Hollow fibers with smaller inner diameters cause an increase in blood pressure, which causes blood to enter the hollow fibers more easily. The hollow-fiber shape hardly affects the blood flow. While improved dialysate and blood flow cause higher clearance of low molecular-weight substances, higher membrane area and pure-water permeability accelerate internal filtration, thereby causing an increase in the clearance of large molecular-weight substances.
Interleukin-18 (IL-18) is a recently described cytokine that enhances interferon-gamma (IFN-gamma) production, either independently or synergistically with IL-12. These properties identify IL-18 as an immunoregulatory cytokine that may be pivotal in host defense against intracellular pathogens. We have isolated and sequenced a cDNA encoding bovine IL-18. The open reading frame (ORF) is 582 bp in length, encoding a predicted 192 amino acid (aa) precursor protein. Multiple sequence alignment demonstrated that bovine IL-18 has 65% and 78% identity with the predicted amino acid sequences of murine and human IL-18, respectively. IL-18 mRNA was constitutively present in bovine peripheral blood monocyte-derived macrophages (MDM), with no upregulation on stimulation with lipopolysaccharide (LPS). IL-18 transcripts were weakly detected in B lymphocytes but inducible in the B cell line BL-3. Human recombinant IL-18 (rHuIL-18) induced IFN-gamma production by PHA-stimulated peripheral blood mononuclear cells (PBMC), which was potentiated by rHuIL-12. Further, rHuIL-12 and rHuIL-18 enhanced proliferation of untreated PBMC. Antigen-specific T cell lines demonstrated IL-18-dependent enhancement of IFN-gamma production, indicating that bovine T cells are one of the leukocyte subsets that respond to IL-18. Analysis of IL-18 expression and its ability to induce IFN-gamma production by bovine lymphocytes are important considerations for understanding mechanisms of protective immunity and designing vaccines for intracellular pathogens.
Dialyzer performance strongly depends on the flow of blood and dialysis fluid as well as membrane performance. It is necessary, particularly to optimize dialysis fluid flow, to develop a highly efficient dialyzer. The objective of the present study is to evaluate by computational analysis the effects of dialyzer jacket baffle structure, taper angle, and taper length on dialysis fluid flow. We modeled 10 dialyzers of varying baffle angles (0, 30, 120, 240, and 360 degrees ) with and without tapers. We also modeled 30 dialyzers of varying taper lengths (0, 12.5, 25.0, and 50.0 mm) and angles (0, 2, 4, and 6 degrees ) based on technical data of APS-SA dialyzers having varying surface areas of 0.8, 1.5, and 2.5 m(2) (Rexeed). Dialysis fluid flow velocity was calculated by the finite element method. The taper part was divided into 10 sections of varying fluid resistances. A pressure of 0 Pa was set at the dialysis fluid outlet, and a dialysis fluid flow rate of 500 mL/min at the dialysis fluid inlet. Water was used as the dialysis fluid in the computational analysis. Results for dialysis fluid flow velocity of the modeled dialyzers indicate that taper design and a fully surrounded baffle are important in making the dialysis fluid flow into a hollow-fiber bundle easily and uniformly. However, dialysis fluid flow channeling occurred particularly at the outflowing part with dialyzers having larger taper lengths and angles. Optimum design of dialysis jacket structure is essential to optimizing dialysis fluid flow and to increasing dialyzer performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.