Influenza A viruses are a major cause of mortality. Given the potential for future lethal pandemics, effective drugs are needed for the treatment of severe influenza such as that caused by H5N1 viruses. Using mediator lipidomics and bioactive lipid screen, we report that the omega-3 polyunsaturated fatty acid (PUFA)-derived lipid mediator protectin D1 (PD1) markedly attenuated influenza virus replication via RNA export machinery. Production of PD1 was suppressed during severe influenza and PD1 levels inversely correlated with the pathogenicity of H5N1 viruses. Suppression of PD1 was genetically mapped to 12/15-lipoxygenase activity. Importantly, PD1 treatment improved the survival and pathology of severe influenza in mice, even under conditions where known antiviral drugs fail to protect from death. These results identify the endogenous lipid mediator PD1 as an innate suppressor of influenza virus replication that protects against lethal influenza virus infection.
Angiotensin converting enzyme 2 (ACE2) is a negative regulator of the renin-angiotensin system (RAS), catalyzing the conversion of Angiotensin II to Angiotensin 1-7. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardioprotective peptide. While an antagonistic relationship between the RAS and apelin has been proposed, such functional interplay remains elusive. Here we found that ACE2 was downregulated in apelin-deficient mice. Pharmacological or genetic inhibition of angiotensin II type 1 receptor (AT1R) rescued the impaired contractility and hypertrophy of apelin mutant mice, which was accompanied by restored ACE2 levels. Importantly, treatment with angiotensin 1-7 rescued hypertrophy and heart dysfunctions of apelin-knockout mice. Moreover, apelin, via activation of its receptor, APJ, increased ACE2 promoter activity in vitro and upregulated ACE2 expression in failing hearts in vivo. Apelin treatment also increased cardiac contractility and ACE2 levels in AT1R-deficient mice. These data demonstrate that ACE2 couples the RAS to the apelin system, adding a conceptual framework for the apelin-ACE2-angiotensin 1-7 axis as a therapeutic target for cardiovascular diseases.
The ELA-APJ axis protects from pressure overload-induced heart failure possibly via suppression of ACE expression and pathogenic angiotensin II signalling. The different effects of ELA and Apelin on the expression of ACE and ACE2 implicate fine-tuned mechanisms for a ligand-induced APJ activation and downstream signalling.
Shortening and removal of the polyadenylate [poly(A)] tail of mRNA, a process called deadenylation, is a key step in mRNA decay that is mediated through the CCR4-NOT (carbon catabolite repression 4-negative on TATA-less) complex. In our investigation of the regulation of mRNA deadenylation in the heart, we found that this complex was required to prevent cell death. Conditional deletion of the CCR4-NOT complex components Cnot1 or Cnot3 resulted in the formation of autophagic vacuoles and cardiomyocyte death, leading to lethal heart failure accompanied by long QT intervals. Cnot3 bound to and shortened the poly(A) tail of the mRNA encoding the key autophagy regulator Atg7. In -depleted hearts, expression was posttranscriptionally increased. Genetic ablation of , but not, increased survival and partially restored cardiac function of or knockout mice. We further showed that in -depleted hearts, Atg7 interacted with p53 and modulated p53 activity to induce the expression of genes encoding cell death-promoting factors in cardiomyocytes, indicating that defects in deadenylation in the heart aberrantly activated Atg7 and p53 to promote cell death. Thus, mRNA deadenylation mediated by the CCR4-NOT complex is crucial to prevent Atg7-induced cell death and heart failure, suggesting a role for mRNA deadenylation in targeting autophagy genes to maintain normal cardiac homeostasis.
Apelin is an inotropic and cardioprotective peptide that exhibits beneficial effects through activation of the APJ receptor in the pathology of cardiovascular diseases. Apelin induces the expression of angiotensin-converting enzyme 2 (ACE2) in failing hearts, thereby improving heart function in an angiotensin 1-7-dependent manner. Whether apelin antagonizes the over-activation of the renin-angiotensin system in the heart remains elusive. In this study we show that the detrimental effects of angiotensin II (Ang II) were exacerbated in the hearts of aged apelin-gene-deficient mice. Ang II-mediated cardiac dysfunction and hypertrophy were augmented in apelin knockout mice. The loss of apelin increased the ratio of angiotensin-converting enzyme (ACE) to ACE2 expression in the Ang II-stressed hearts, and Ang II-induced cardiac fibrosis was markedly enhanced in apelin knockout mice. mRNA expression of pro-fibrotic genes, such as transforming growth-factor beta (TGF-β) signaling, were significantly upregulated in apelin knockout hearts. Consistently, treatment with the ACE-inhibitor Captopril decreased cardiac contractility in apelin knockout mice. In vitro, apelin ameliorated Ang II-induced TGF-β expression in primary cardiomyocytes, accompanied with reduced hypertrophy. These results provide direct evidence that endogenous apelin plays a crucial role in suppressing Ang II-induced cardiac dysfunction and pathological remodeling. Int. J. Mol. Sci. 2019, 20, 239 2 of 12dysfunctions [8,10,11]. By contrast, APJ was identified as a dual receptor to mediate cardiac hypertrophy [12,13] via β-arrestin signaling [14,15]. Thus, the precise role of endogenous apelin signaling in heart function remains elusive.Cardiac hypertrophy is an adaptive response to maintain cardiac function in the event of an increased workload, although prolonged cardiac hypertrophy can lead to heart failure via the ischemia of cardiomyocytes [16,17]. In addition, cardiac fibrosis adversely increases tissue stiffness and impairs ventricular function. Consistently, cardiac hypertrophy and the development of fibrosis correlate with the deterioration of myocardial function in heart failure [18][19][20]. Thus, cardiac hypertrophy and fibrosis are key features of heart failure, and apelin's inotropic and protective roles in the heart are attractive as a potential therapeutic candidate for treating heart failure.Apelin has also been identified as a substrate for angiotensin-converting enzyme 2 (ACE2), which cleaves apelin with similar efficiency as its primary substrate angiotensin II (Ang II) [21][22][23]. ACE2 is a negative regulator of the renin-angiotensin system (RAS) that inactivates Ang II by converting it to angiotensin 1-7 (Ang 1-7) [21][22][23], whereas angiotensin-converting enzyme 1 (or ACE1) activates RAS by converting Ang I to Ang II. ACE2 was also identified as a regulator of heart failure [24-26], diabetic nephropathy [27,28], acute lung failure [29,30], and the SARS (severe acute respiratory syndrome) coronavirus receptor [31,32].Apelin-APJ sig...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.