High resolution imagery of the solar X-ray corona provides a crucial key to understand dynamics and heating processes of plasma particles there. However, X-ray imagery of the Sun with sub-arcsecond resolution has yet to be conducted due to severe technical difficulty in fabricating precision Wolter mirrors. For future X-ray observations of the Sun's corona, we are attempting to realize precision Wolter mirrors with sub-arcsecond resolution by adopting advanced surface polish and metrology methods based on nano-technology to sector mirrors which consist of a portion of an entire annulus. Following fabrication of the first engineering mirror and subsequent evaluation on the X-ray focusing performance in 2013, the second engineering mirror was made with improvements in both precision polish and metrology introduced. Measurement of focusing performance on the second mirror at SPring-8 synchrotron facility with 8 keV X-rays has demonstrated that the FWHM size of the PSF core reached down to 0.2" while its HPD (Half Power Diameter) size remained at ~3" due to the presence of small-angle scatter just outside of the core. Also, there was notable difference in the focal length between sagittal and meridional focusing which could have been caused by an error in the sag in the meridional direction of <10 nm in the mirror area. Further improvements to overcome these issues have been planned for the next engineering mirror.
In recent years, the volumes of data collected by Earth observation missions have significantly increased. With the need to speed up transmission of those high-rate mission data from space to ground, JAXA plans to replace X-band with Ka-band for the direct space-toground downlink, for future missions after the Advanced Optical Satellite, to support the high data rate communications. To accommodate the requirement, JAXA has been developing new Ka-band reception capability to enable direct reception of Ka-band radio signals from spacecrafts in the near-Earth regime.
High resolution imagery of the Sun's X-ray corona provides an essential clue in understanding dynamics and heating processes of plasma particles there. However, X-ray imagery of the Sun with sub-arcsecond resolution has so far never been conducted due to severe technical difficulty in fabricating precision Wolter mirrors. For future X-ray observations of the solar corona, we are attempting to realize precision Wolter mirrors with sub-arcsecond resolution by adopting advanced surface polish and metrology methods to sector mirrors which consist of a portion of an entire annulus, by direct polishing onto the mirror substrate.Based on the knowledge obtained through fabrication of the first (in 2013) and second (in 2014) engineering Wolter mirrors and subsequent evaluations on their X-ray focusing performance, the third engineering mirror was made in 2015−2016. The primary target of improvement over the second mirror was to suppress figure error amplitude especially for spatial frequencies around 1 mm -1 and to suppress the large astigmatism that was present in the second mirror, by introducing improved deterministic polish and smoothing on the precision mirror surfaces (32.5 mm × 10 mm in area for both parabola and hyperbola segments), as well as by careful characterization of the systematic error in the figure measurement system for the precision polish. Measurements on the focusing performance of thus-fabricated third Wolter mirror at SPring-8 synchrotron facility with 8 keV X-rays demonstrated that the mirror attained sub-arcsecond focusing performance with its HPD (half-power diameter) size reaching as small as ~0.2 arcsec for meridional focusing while ~0.1 arcsec for sagittal focusing. The meridional focusing achieved nearly diffraction limited performance (~0.12 arcsec FWHM for the PSF core). We also confirmed that the large astigmatism noted in the second mirror was correctly removed in the third mirror with the correction of the above-mentioned systematic error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.