Psychiatric symptoms are often accompanied by somatic symptoms induced by the activity of the autonomic nervous system (ANS). The aim of this study was to calculate the time lag between electroencephalography (EEG) and electrocardiography (ECG) responses, to clarify the changes in the relationship between the cerebral cortex (CC) and the sympathetic nervous system (SNS) during emotional recall processing. Twenty-two healthy young adults were examined. Their EEG and ECG data were simultaneously recorded during emotional audiovisual recall tasks using pleasant and unpleasant stimuli for 180 s, with three repetitions (Epochs 1 & 2 and Epoch 3). The EEG data were analyzed using a fast Fourier transform (FFT) to obtain a time series of relative power spectra, X E , in the theta 1, theta 2, alpha 1, alpha 2, alpha 3, beta 1, beta 2, and beta 3 bands. Time series of RR (inter-beat) intervals (time intervals between successive R waves) derived from the ECG spectral analysis using FFT was applied to the resampled time series of RR intervals over about 60 s to obtain a time series of power spectra for the ratio low frequency/high frequency (LH/HF), X C , which reflects the activity of the sympathetic nervous function. The time lag between X E and X C was calculated using wavelet-crosscorrelation analysis. The results demonstrated that the brain responded to unfamiliar emotionally pleasant stimuli in Epochs 1 & 2 earlier than the SNS, whereas the brain and SNS responded to unfamiliar unpleasant stimuli nearly simultaneously. The brain was activated rapidly in response to familiar unpleasant stimuli, although SNS responded more rapidly to familiar pleasant stimuli than the brain in Epoch 3. Our results quantitatively describe the relationship between the CC and the ANS during emotional recall.
Cortical stimulation has been used for brain mapping for over a century, and a standard assumption is that stimulation interferes with task execution due to local effects at the stimulation site. Stimulation can however produce afterdischarges which interfere with functional localization and can lead to unwanted seizures. We previously showed that (a) cognitive effort can terminate these afterdischarges, (b) when termination thus occurs, there are electrocorticography changes throughout the cortex, not just at sites with afterdischarges or sites thought functionally important for the cognitive task used, and (c) thresholds for afterdischarges and functional responses can change among stimulation trials. We here show that afterdischarge termination can occur prior to overt performance of the cognitive tasks used to terminate them. These findings, taken together, demonstrate that task-related brain changes are not limited to one or a group of functional regions or a specific network, and not limited to the time directly surrounding overt task execution. Discrete locations, networks and times importantly underpin clinical behaviors. However, brain activity that is diffuse in location and extended in time also affect task execution and can affect brain mapping. This may in part reflect fluctuating levels of attention, engagement, or motivation during testing.
An emotional event can provoke somatic symptoms as a consequence of brain responses accompanying reactions of the autonomic nervous system (ANS). ANS consists of the sympathetic nervous system and the parasympathetic nervous system, and their anatomical and physiological mechanisms are different. The aim of this study was to evaluate the time lag between the responses of electroencephalography (EEG) and the parasympathetic nervous system (from electrocardiography; ECG) during emotional recall. EEG and ECG of healthy young adults were simultaneously recorded during the recall of emotionally pleasant and unpleasant audiovisual stimuli, with three repetitions. A time series (TS) of relative power spectra from EEG and a TS of power spectral values in high frequency (HF) of RR intervals in ECG were obtained using fast Fourier transform. The time lag between the TS of EEG and HF was calculated using wavelet cross‐correlation analysis. The results indicated that the cerebral cortex responded earlier than the parasympathetic nervous system to the pleasant stimuli. In contrast, the parasympathetic nervous system responded earlier than the cerebral cortex to the unpleasant stimuli. These events constantly appeared in both unfamiliar and familiar situations. This study quantitatively shows that the parasympathetic nervous system quickly and constantly reacts to emotionally unpleasant stimuli. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Hippocampus is crucial for the formation of emotional memory. We found the relationship between hippocampal responses to emotional stimuli and the mental stabilities of people in our preliminary study. In this study, we have also evaluated how the emotional stimuli would affect amygdala and thalamus in the brain, and how the personality stabilities could relate to the responses in the brain using functional magnetic resonance imaging (fMRI). We evaluated the subjects' personality features with the Yatabe-Guilford Personality Test (Y-G test) and psychosomatic symptoms with the Cornell Medical Index (CMI). The subjects were categorized into the mentally stable group and the mentally unstable group according to the total scores of the Y-G test and the CMI. The brain functional responses under emotional stimuli were measured using fMRI. The region of interest (ROI) analysis was performed to abstract significant changes in order to compare responses among the different emotional stimuli. We conducted the regression analysis to abstract the relationship between the mean % signal change from fMRI and the personality stability. The fMRI results showed that the hippocampus, thalamus, and right amygdala activities under the human relationship stimuli increased with ascending value of mental instability. Our findings suggest that the memory process in the hippocampus and the threat alarm system in the thalamus under the human-related stimuli crucially influence the emotional reaction of mentally unstable people. These processes in the brain would affect the event that stresses on human relationships that often cause people to suffer from mental disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.