We have used differential scanning calorimetry (DSC) to investigate the phase transition of a liquid crystal, N-(4-methoxybenzylidene)-4-butylaniline (MBBA), confined within porous silica materials with one- and three-dimensional pore architectures. Each phase-transition temperature of the confined MBBA linearly decreased with the inverse pore size compared with that of bulk MBBA. However, the degree of temperature shift varied owing to differences in the pore architectures. In addition, when MBBA was confined within one-dimensional pores, the thermal anomaly associated with the phase transition from the nematic phase to the isotropic liquid phase was not observed in the DSC measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.