Annealed Ni–P–coated Si (Ni–P/Si) anodes for lithium-ion batteries have shown a superior cycle life with discharge capacity of 1000 mA h g−1 over 1100 cycles in some ionic-liquid electrolytes. However, the annealing temperature has yet to be optimized for Ni–P/Si electrodes. We investigated the electrochemical performance of Ni–P/Si electrode annealed at various temperatures in this study. The Ni–P/Si electrodes annealed at 800 ± 20 °C exhibited a superior cycle life with a reversible capacity of 1000 mA h g−1 over 1000 cycles, whereas the capacity of the electrodes annealed at temperatures of 750 °C and 850 °C faded at approximately 500 cycles. At 800 °C, a newly formed NiSi2 phase was theorized to significantly contribute to improving adhesion between the Ni–P coating layer and the Si particles. The Ni–P coating particles tended to aggregate at 850 °C, leading to a reduction in the coating effect, that is, a decline in their reactivity with Li+, acceleration of electrode disintegration, and a reduction in electrical conductivity. On the other hand, Ni–P/Si electrodes annealed at 850 °C exhibited a superior rate performance. The amount of available NiSi2 which ultimately contributed to higher reactivity with Li should increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.