In this paper, we introduce the notion of fuzzy bipolar metric space and prove some fixed point results in this space. We provide some non-trivial examples to support our claim and also give applications for the usability of the main result in fuzzy bipolar metric spaces.
In this paper, we introduce a new iteration scheme, named as the S**-iteration scheme, for approximation of fixed point of the nonexpansive mappings. This scheme is faster than Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur, and Ullah iteration schemes. We show the stability of our instigated scheme and give a numerical example to vindicate our claim. We also put forward some weak and strong convergence theorems for Suzuki's generalized nonexpansive mappings in the setting of uniformly convex Banach spaces. Our results comprehend, improve, and consolidate many results in the existing literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.