The emergence and spread of drug resistance in Plasmodium falciparum, the parasite causing the most severe form of human malaria, is a major threat to malaria control and elimination programs around the globe. With P. falciparum having evolved widespread resistance against a number of previously widely used drugs, currently, artemisinin (ART) and its derivatives are the cornerstones of first-line treatments of uncomplicated malaria. However, growing incidences of ART failure reflect the spread of ART-resistant P. falciparum strains. Despite current efforts to understand the primary cause of ART resistance due to mutations in the Kelch 13 gene (PfK13), the mechanism underlying ART resistance is still not completely unclear and no feasible strategies to counteract the causes and thereby restoring the efficiency of ART have been developed. We use a polypharmacology approach to identify potential drugs that can be used for the novel purpose (target). Of note, we have designed a multimodal stratagem to identify approved drugs with a potential antimalarial activity using computational drug reprofiling. Our investigations suggest that oxetacaine, simvastatin, repaglinide, aclidinium, propafenone, and lovastatin could be repurposed for malaria control and prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.