Recently, the assessment and selection of most suitable low-carbon tourism strategy has gained an extensive consideration from sustainable perspectives. Owing to participation of multiple qualitative and quantitative attributes, the low-carbon tourism strategy (LCTS) selection process can be considered as multi-criteria decision-making (MCDM) problem. As uncertainty is usually occurred in LCTSs evaluation, the theory of interval-valued intuitionistic fuzzy sets (IVIFSs) has been established as more flexible and efficient tool to model the uncertain decision-making problems. The idea of the present study is to develop an extended method using additive ratio assessment (ARAS) framework and similarity measures in a way to find an effective solution to the decision-making problems using IVIFSs. The bases of the proposed method are the IVIFSs operators, some modifications in the traditional ARAS framework and a calculation procedure of the weights of the criteria. To calculate criterion weight, new similarity measures for IVIFSs are developed aiming at the achievement of more realistic weights. Also, a comparison is demonstrated to the currently used similarity measures in order to show the efficiency of the developed approach. To confirm that the developed IVIF-ARAS approach can be successfully employed to practical decision-making problems, a case study of LCTS selection problem is considered. The final results from the developed approach and the extant models are compared for the validation of the proposed approach in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.