South Asia, with more than one-fifth of the world’s population, is highly vulnerable to heatwaves and associated health consequences. The population experiences considerably higher residential vulnerability due to limited infrastructural capacities, economic resources, and health and environmental quality deficiencies. However, a limited number of studies are available from the region to account for the health effects of heatwaves. Therefore, this study has conducted a comprehensive review to characterize heatwaves across South Asian countries. The review explicitly identifies the population’s vulnerability to heatwaves during recent years and heatwave management policies in the region. The literature review suggests increased heat-related deaths in most South Asian countries, with few exceptions. In addition, the analysis of historical temperature records identified an upward trend in annual average temperature across the South Asian countries. The study highlights various heatwave definitions that have been used in the region to facilitate comparative evidence. The review of policies identified that only a few South Asian countries have functional heatwave management plans and majorly lack community and residential preparedness for heatwaves. Therefore, this study identifies potential community- and residential-based adaptation strategies to mitigate heat discomfort. As prospective solutions, the study recommends adaptation strategies such as blue–green spaces, indoor passive cooling, infrastructural adjustments, heat action plans, etc. However, such adaptation measures require a holistic amalgamation of different stakeholders to fabricate heatwave-resilient cities.
Background: Diarrhea remains a common infectious disease caused by various risk factors in developing countries. This study investigated the incidence rate and temporal associations between diarrhea and meteorological determinants in five regions of Surabaya, Indonesia. Method: Monthly diarrhea records from local governmental health facilities in Surabaya and monthly means of weather variables, including average temperature, precipitation, and relative humidity from Meteorology, Climatology, and Geophysical Agency were collected from January 2018 to September 2020. The generalized additive model was employed to quantify the time lag association between diarrhea risk and extremely low (5th percentile) and high (95th percentile) monthly weather variations in the north, central, west, south, and east regions of Surabaya (lag of 0–2 months). Result: The average incidence rate for diarrhea was 11.4 per 100,000 during the study period, with a higher incidence during rainy season (November to March) and in East Surabaya. This study showed that the weather condition with the lowest diarrhea risks varied with the region. The diarrhea risks were associated with extremely low and high temperatures, with the highest RR of 5.39 (95% CI 4.61, 6.17) in the east region, with 1 month of lag time following the extreme temperatures. Extremely low relative humidity increased the diarrhea risks in some regions of Surabaya, with the highest risk in the west region at lag 0 (RR = 2.13 (95% CI 1.79, 2.47)). Extremely high precipitation significantly affects the risk of diarrhea in the central region, at 0 months of lag time, with an RR of 3.05 (95% CI 2.09, 4.01). Conclusion: This study identified a high incidence of diarrhea in the rainy season and in the deficient developed regions of Surabaya, providing evidence that weather magnifies the adverse effects of inadequate environmental sanitation. This study suggests the local environmental and health sectors codevelop a weather-based early warning system and improve local sanitation practices as prevention measures in response to increasing risks of infectious diseases.
Objectives: Diarrheal disease continues to be a significant cause of morbidity and mortality. We investigated how anomalies in monthly average temperature, precipitation, and surface water storage (SWS) impacted bacterial, and viral diarrhea morbidity in Taiwan between 2004 and 2015. Methods: A multivariate analysis using negative binomial generalized estimating equations was employed to quantify age- and cause-specific cases of diarrhea associated with anomalies in temperature, precipitation, and SWS. Results: Temperature anomalies were associated with an elevated rate of all-cause infectious diarrhea at a lag of 2 months, with the highest risk observed in the under-5 age group (incidence rate ratio [IRR]=1.03, 95% CI, 1.01-1.07). Anomalies in SWS were associated with increased viral diarrhea rates, with the highest risk observed in the under-5 age group at a 2-month lag (IRR= 1.27; 95% CI: 1.14, 1.42) and a lesser effect at a 1-month lag (IRR=1.18; 95% CI, 1.06-1.31). Furthermore, cause-specific diarrheal diseases were significantly affected by extreme weather events in Taiwan. Both extremely cold and hot conditions were associated with an increased risk of all-cause infectious diarrhea regardless of age, with IRRs ranging from 1.03 (95% CI, 1.02-1.12) to 1.18 (95% CI, 1.16-1.40).Conclusions: The risk of all-cause infectious diarrhea was significantly associated with average temperature anomalies in the population aged under 5 years. Viral diarrhea was significantly associated with anomalies in SWS. Therefore, we recommend strategic planning and early warning systems as major solutions to improve resilience against climate change.
BackgroundExtreme temperatures are triggering and exacerbating hospital admissions and health burdens; however, it is still understudied. Therefore, we evaluated the effects of the average temperature on overall hospitalisation and the average length of hospital stay.MethodsDaily area-specific age-sex stratified hospitalisation records from 2006 to 2020 were collected from the National Health Research Institutes of Taiwan. The distributed lag non-linear model was used to estimate the area-specific relative risk (RR) and 95% CI associated with daily average temperature. Overall cumulative RR was pooled from area-specific RRs using random effects meta-analysis. Temperature effects of extreme high and low thresholds were also evaluated based on the 99th (32°C) and 5th (14°C) percentiles, respectively.ResultsOur findings suggested that the elderly (age ≥65 years) are vulnerable to temperature effects, while differential gender effects are not explicit in Taiwan. A higher risk of in-patient visits was seen among the elderly during extreme low temperatures (RR 1.08; 95% CI 1.04 to 1.11) compared with extreme high temperatures (RR 1.07; 95% CI 1.05 to 1.10). Overall, high-temperature extremes increased the risk of hospitalisation with an RR of 1.05 (95% CI 1.03 to 1.07) among the all-age-sex population in Taiwan. Additionally, lag-specific analysis of the study revealed that high-temperature effects on in-patient visits are effective on the same day of exposure, while cold effects occurred after 0–2 days of exposure. The average length of hospital stays can also increase with high-temperature extremes among age group 41–64 years and the elderly.ConclusionPublic health preparedness should consider the increased load on health facilities and health expenditures during extreme temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.