We present a three-step method to predict prostate cancer (PCa) regions on biopsy tissue samples based on high-confidence, low-resolution PCa regions marked by a pathologist. First, we will apply a texture-analysis technique on a high-magnification optical image to predict PCa regions on an adjacent tissue slice. Second, we will design a prediction model for the same purpose, using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) tissue-imaging data from the adjacent slice. Finally, we will fuse those two results to obtain the PCa regions that will assist MALDI imaging biomarker identification. Experiment results show that the texture analysis–based prediction is sensitive (87.45%) but less specific (75%), and the prediction based on the MALDI spectra data processing is not sensitive (50.98%) but supremely specific (100%). By combining these two results, an optimized prediction for PCa regions on the adjacent slice can be achieved (sensitivity: 80.39%, specificity: 93.09%).
For the early detection of prostate cancer, the analysis of the Prostate-specific antigen (PSA) in serum is currently the most popular approach. However, previous studies show that 15% of men have prostate cancer even their PSA concentrations are low. MALDI Mass Spectrometry (MS) proves to be a better technology to discover molecular tools for early cancer detection. The molecular tools or peptides are termed as biomarkers. Using MALDI MS data from prostate tissue samples, prostate cancer biomarkers can be identified by searching for molecular or molecular combination that can differentiate cancer tissue regions from normal ones. Cancer tissue regions are usually identified by pathologists after examining H&E stained histological microscopy images. Unfortunately, histopathological examination is currently done on an adjacent slice because the H&E staining process will change tissue's protein structure and it will derogate MALDI analysis if the same tissue is used, while the MALDI imaging process will destroy the tissue slice so that it is no longer available for histopathological exam. For this reason, only the most confident cancer region resulting from the histopathological examination on an adjacent slice will be used to guide the biomarker identification. It is obvious that a better cancer boundary delimitation on the MALDI imaging slice would be beneficial. In this paper, we proposed methods to predict the true cancer boundary, using the MALDI MS data, from the most confident cancer region given by pathologists on an adjacent slice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.