Thermostatically controlled loads (TCLs) account for more than one-third of the U.S. electricity consumption. Various techniques have been used to model TCL populations. A high-fidelity analytical model of heterogeneous TCL (HrTCL) populations is of special interest for both utility managers and customers (that facilitates the aggregate synthesis of power control in power networks). We present a deterministic hybrid partial differential equation (PDE) model which accounts for HrTCL populations and facilitates analysis of common scenarios like cold load pick up, cycling, and daily and/or seasonal temperature changes to estimate the aggregate performance of the system. The proposed technique is flexible in terms of parameter selection and ease of changing the set-point temperature and deadband width all over the TCL units. We investigate the stability of the proposed model along with presenting guidelines to maintain the numerical stability of the discretized model during computer simulations. Moreover, the proposed model is a close fit to design feedback algorithms for power control purposes. Hence, we present output- and state-feedback control algorithms, designed using the comparison principle and Lyapunov analysis, respectively. We conduct various simulations to verify the effectiveness of the proposed modeling and control techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.