Interleukin-1β (IL-1β) binds to the IL-1 receptor (IL-1R) and is a key cytokine mediator of inflammasome activation. IL-1β signaling leads to parturition in preterm birth (PTB) and contributes to the retinal vaso-obliteration characteristic of oxygen-induced retinopathy (OIR) of premature infants. Therapeutics targeting IL-1β and IL-1R are approved to treat rheumatoid arthritis; however, all are large proteins with clinical limitations including immunosuppression, due in part to inhibition of NF-κB signaling, which is required for immuno-vigilance and cytoprotection. The all-D-amino acid peptide 1 (101.10, H- d -Arg- d -Tyr- d -Thr- d -Val- d -Glu- d -Leu- d -Ala-NH 2 ) is an allosteric IL-1R modulator, which exhibits functional selectivity and conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Peptide 1 has proven effective in experimental models of PTB and OIR. Seeking understanding of the structural requirements for the activity and biased signaling of 1 , a panel of twelve derivatives was synthesized employing the various stereochemical isomers of α-amino-γ-lactam (Agl) and α-amino-β-hydroxy-γ-lactam (Hgl) residues to constrain the D-Thr-D-Val dipeptide residue. Using circular dichroism spectroscopy, the peptide conformation in solution was observed to be contingent on Agl, Hgl, and Val stereochemistry. Moreover, the lactam mimic structure and configuration influenced biased IL-1 signaling in an in vitro panel of cellular assays as well as in vivo activity in murine models of PTB and OIR. Remarkably, all Agl and Hgl analogs of peptide 1 did not inhibit NF-κB signaling but blocked other pathways, such as JNK and ROCK2 phosphorylation contingent on structure and configuration. Efficacy in preventing preterm labor correlated with a capacity to block IL-1β-induced IL-1β synthesis. Furthermore, the importance of inhibition of JNK and ROCK2 phosphorylation for enhanced activity was highlighted for prevention of vaso-obliteration in the OIR model. Taken together, lactam mimic structure and stereochemistry strongly influenced conformation and biased signaling. Selective modulation of IL-1 signaling was proven to be particularly beneficial for curbing inflammation in models of preterm labor and retinopathy of prematurity (ROP). A class of biased ligands has been created with potential to serve as selective probes for studying IL-1 signaling in disease. Moreover, the small peptide mimic prototypes are promising leads for developing immunomodulatory therapies with easier administration and maintenance of beneficial effects of NF-κB signaling.
α- N-(Fmoc)Amino-γ-lactam dipeptides with a variety of β-substituents were synthesized stereoselectively with minimal β-elimination by routes employing, respectively, Mitsunobu chemistry and cyclic sulfamidate nucleophilic ring opening from trans- and cis-β-hydroxy-α-amino-γ-lactam precursors. This diversity-oriented method provides stereochemically pure dipeptide mimics bearing Cys, Ser, Thr, Dap, Dab, His, and other amino acid residues with constrained backbone and side chain conformations.
CONSPECTUS: γ,δ-Unsaturated ketones, so-called homoallylic ketones, have served as versatile building blocks for the synthesis of a variety of heterocycles, carbocycles, natural products, and reactive intermediates. Procured by a variety of processes, including conjugate addition of vinyl organometallic reagents to unsaturated ketones, allylation of silyl enol ethers, and rearrangements, homoallylic ketones are often synthesized by step-intensive methods. The cascade addition of 2 equiv of vinyl Grignard reagent to a carboxylate was reported by the Lubell laboratory in 2003 to give effective access to homoallylic ketones from a variety of aromatic, aliphatic, and α-amino methyl esters. Employing readily accessible vinyl magnesium halides in the presence of a catalytic amount of copper salt, this cascade reaction provides high yields of homoallylic ketones with minimal side product by a process featuring the assembly and collapse of a tetrahedral intermediate with expulsion of alkoxide ion, followed by conjugate addition to the resulting enone. Application of the cascade reaction to the synthesis of various homoallylic ketones has provided versatile building blocks for the synthesis of targets for different applications. For example, by employing (hetero)aryl di-and tricarboxylates as precursors, copper-catalyzed cascade additions have provided donor−acceptor and star-shaped monomers for optical-electronic materials. Amino ester starting materials have given homoallylic ketones for the synthesis of various peptidomimetics, including heteroarylalanines, hydroxyethylene isoesters, and diazepinone turn mimics. Moreover, anthranilate has served as building block to prepare various pyrrole, quinoline, benzodiazepine, and benzotriazepine heterocyles. In addition, cascade additions on hydroxyprolinates have given access to bipyrrole precursors of the prodigiosin family of natural products. In the interest to highlight the utility of the copper-catalyzed cascade addition of vinyl Grignard reagents to carboxylates, this Account provides details on the broad scope of substrates that deliver homoallylic ketone products as well as an overview of the wide range of applications in which this method may impact including materials and peptide science, heterocycle and natural product synthesis, and medicinal chemistry.
Pursuing β-substituted α-N-(Fmoc)amino-γ-lactam (Agl) dipeptides by displacements of the alcohol corresponding β-hydroxy-α-amino-γ-lactam (Hgl) residue, nucleophilic ring opening of cyclic sulfamidate 3 with thiocyanate has provided entry to trans-β-methylthio-Agl derivative 5 for use as a constrained S-methyl Cys derivative.
As a key cytokine mediator of inflammation, interleukin-1β (IL-1β) binds to the IL-1 receptor (IL-1R) and activates various downstream signaling mediators, including NF-κB, which is required for immune vigilance and cellular protection. Toward the development of IL-1-targeting therapeutics which exhibit functional selectivity, the all-D-amino acid peptide 1 (101.10, H-D-Arg-D-Tyr-D-Thr-D-Val-D-Glu-D-Leu-D-Ala-NH2) was conceived as an allosteric IL-1R modulator that conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Employing β-hydroxy-α-amino-γ-lactam (Hgl) stereoisomers to study the conformation about the Thr3 residue in 1, [(3R,4S)-Hgl3]-1 (2b), among all possible diastereomers, was found to exhibit identical in vitro and in vivo activity as the parent peptide and superior activity to the α-amino-γ-lactam (Agl) counterpart. Noting the relevance of the β-hydroxyl substituent and configuration for the activity of (3R,4S)-2b, fifteen different β-substituted-Agl3 analogs of 1 (e.g., 2c-q) have now been synthesized by a combination of solution- and solid-phase methods employing N-Fmoc-β-substituted-Agl3-Val-OH dipeptide building blocks. Introduction of a β-azido-Agl3 residue into the resin bound peptide and subsequent reduction and CuAAC chemistry gave access to a series of amine and triazole derivatives (e.g., 2h-q). β-Substituted-[Agl3]-1 analogs 2c-q exhibited generally similar circular dichroism (CD) spectra as that of Hgl analog 2b in water, presenting curve shapes indicative of β-turn structures. The relevance of the β-substituent was indicated in rodent models of preterm labor and retinopathy of prematurity (ROP), in which certain analogs inhibited preterm birth and vaso-obliteration, respectively, with activity similar to 1 and 2b. The β-substituted-[Agl3]-1 analogs exhibited functional selectivity on IL-1-induced signaling pathways. The described solid-phase method has provided discerning probes for exploring peptide structure-activity relationships and valuable leads for developing prototypes to treat inflammatory events leading to prematurity and retinopathy of prematurity, which are leading causes of infant morbidity and blindness respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.