Iran is experiencing unprecedented climate-related problems such as drying of lakes and rivers, dust storms, record-breaking temperatures, droughts, and floods. Here, we use the ensemble of five high-resolution climate models to project maximum and minimum temperatures and rainfall distribution, calculate occurrences of extreme temperatures (temperatures above and below the historical 95th and 5th percentiles, respectively), analyze compound of precipitation and temperature extremes, and determine flooding frequencies across the country. We found that compared to the period of 1980–2004, in the period of 2025–2049, Iran is likely to experience more extended periods of extreme maximum temperatures in the southern part of the country, more extended periods of dry (for ≥120 days: precipitation <2 mm, Tmax ≥30 °C) as well as wet (for ≤3 days: total precipitation ≥110 mm) conditions, and higher frequency of floods. Overall, the combination of these results projects a climate of extended dry periods interrupted by intermittent heavy rainfalls, which is a recipe for increasing the chances of floods. Without thoughtful adaptability measures, some parts of the country may face limited habitability in the future.
The total phosphorus (TP) concentration, as the primary limiting eutrophication factor in the Mahabad Dam reservoir in Iran, was studied, considering the combined impacts of climate change, as well as the scenarios on changes in upstream TP loadings and downstream dam water allocations. Downscaled daily projected climate data were obtained from the Beijing Normal University Earth System Model (BNU-ESM) under moderate (RCP4.5) and extreme (RCP8.5) scenarios. These data were used as inputs of a calibrated Soil and Water Assessment Tool (SWAT) model of the watershed in order to determine the effects of climate change on runoff yields in the watershed from 2020 to 2050. The SWAT model was calibrated/validated using the SUFI-2 algorithm in the SWAT Calibration Uncertainties Program (SWAT-CUP). Moreover, to model TP concentration in the reservoir and to investigate the effects of upstream/downstream scenarios, along with forecasted climate-induced changes in streamflow and evaporation rates, the System Dynamics (SD) model was implemented. The scenarios covered a combination of changes in population, agricultural and livestock farming activities, industrialization, water conservation, and pollution control. Relative to the year 2011 in which the water quality data were available, the SD results showed the highest TP concentrations in the reservoir under scenarios in which the inflow to the reservoir had decreased, while the upstream TP loadings and downstream dam water allocations had increased (+29.9%). On the other hand, the lowest TP concentration was observed under scenarios in which upstream TP loadings and dam water allocations had decreased (−18.5%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.