Objective: Storage of physiological waveform data for retrospective analysis presents significant challenges. Resultant data can be very large, and therefore becomes expensive to store and complicated to manage. Traditional database approaches are not appropriate for large scale storage of physiological waveforms. Our goal was to apply modern time series compression and indexing techniques to the problem of physiological waveform storage and retrieval. Approach: We deployed a vendor-agnostic data collection system and developed domain-specific compression approaches that allowed long term storage of physiological waveform data and other associated clinical and medical device data. The database (called AtriumDB) also facilitates rapid retrieval of retrospective data for high-performance computing and machine learning applications. Main results: A prototype system has been recording data in a 42-bed pediatric critical care unit at The Hospital for Sick Children in Toronto, Ontario since February 2016. As of December 2019, the database contains over 720,000 patient-hours of data collected from over 5300 patients, all with complete waveform capture. One year of full resolution physiological waveform storage from this 42-bed unit can be losslessly compressed and stored in less than 300 GB of disk space. Retrospective data can be delivered to analytical applications at a rate of up to 50 million time-value pairs per second. Significance: Stored data are not pre-processed or filtered. Having access to a large retrospective dataset with realistic artefacts lends itself to the process of anomaly discovery and understanding. Retrospective data can be replayed to simulate a realistic streaming data environment where analytical tools can be rapidly tested at scale.
Objectives: Physiologic signals are typically measured continuously in the critical care unit, but only recorded at intermittent time intervals in the patient health record. Low frequency data collection may not accurately reflect the variability and complexity of these signals or the patient’s clinical state. We aimed to characterize how increasing the temporal window size of observation from seconds to hours modifies the measured variability and complexity of basic vital signs. Design: Retrospective analysis of signal data acquired between April 1, 2013, and September 30, 2015. Setting: Critical care unit at The Hospital for Sick Children, Toronto. Patients: Seven hundred forty-seven patients less than or equal to 18 years old (63,814,869 data values), within seven diagnostic/surgical groups. Interventions: None. Measurements and Main Results: Measures of variability (sd and the absolute differences) and signal complexity (multiscale sample entropy and detrended fluctuation analysis [expressed as the scaling component α]) were calculated for systolic blood pressure, heart rate, and oxygen saturation. The variability of all vital signs increases as the window size increases from seconds to hours at the patient and diagnostic/surgical group level. Significant differences in the magnitude of variability for all time scales within and between groups was demonstrated (p < 0.0001). Variability correlated negatively with patient age for heart rate and oxygen saturation, but positively with systolic blood pressure. Changes in variability and complexity of heart rate and systolic blood pressure from time of admission to discharge were found. Conclusions: In critically ill children, the temporal variability of physiologic signals supports higher frequency data capture, and this variability should be accounted for in models of patient state estimation.
Background and ObjectivesChildren with congenital heart disease (CHD) are at risk of deterioration in the face of common childhood illnesses, and their resuscitation and acute treatment requires guidance of CHD experts. Many children with CHD, however, present to their local emergency departments (ED) with gastrointestinal and respiratory symptoms that closely mimic symptoms of CHD related heart failure. This can lead to incorrect or delayed diagnosis and treatment where CHD expertise is limited. An understanding of the differences in cognitive decision-making processes between CHD experts and ED physicians can inform how best to support ED physicians when treating CHD patients.MethodsCardiac intensivists (CHD experts) and pediatric emergency department physicians (ED physicians) in a major academic cardiac center were interviewed using the critical decision method. Interview transcripts were coded deductively based on Schubert and Klein's macrocognitive frameworks and inductively to allow for new or modified characterization of dimensions.ResultsIn total, 6 CHD experts and 7 ED physicians were interviewed for this study. Although both CHD experts and ED physicians spent a lot of time sensemaking, their approaches to sensemaking differed. CHD experts reported readily recognizing the physiology of complex congenital heart disease and focused primarily on ruling out cardiac causes for the presenting illness. ED physicians reported a delay in attributing the signs and symptoms of the presenting illness to congenital heart disease, because these clinical findings were often non-specific, and thus explored different diagnoses. CHD experts moved quickly to treatment and more time anticipating potential problems and making specific contingency plans, while ED physicians spent more time gathering a range of data prior to arriving at a diagnosis. These findings were then applied to develop a prototype web-based decision support application for patients with CHD.ConclusionThere are differences in the cognitive processes used by CHD experts and ED physicians when managing CHD patients. An understanding of differences in the cognitive processes used by CHD experts and ED physicians can inform the development of potential interventions, such as clinical decision support systems and training pathways, to support decision making pertaining to the acute treatment of pediatric CHD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.