This study investigates adaptive sliding neural network (NN) control for quarter active suspension system with dynamic uncertainties and road disturbances. A Multilayer Perceptron (MLP) neural network is adopted to estimate the unknown dynamics of the system. In addition, sliding mode controller is introduced to compensate the function of estimation error for improving the performance of the system. Furthermore, the uniformly and bounded of closed-loop signals is guaranteed by Lyapunov analysis; the adaptation laws for training of MLP are derived from stability analysis. The simulation results demonstrate that the proposed controller can effectively provide a good ride and makes great trade-off between passenger comfort and handling despite the dynamic uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.