The ever increasing use of body-worn systems in the Internet of Things application such as needs better antenna subsystem designs compatible with its requirements. Several challenges limiting the performance of a body-worn system, from materials, and environmental conditions to the effects of on body application and its hazards are discussed. As a test case, a flexible textile planar inverted-F antenna is presented and discussed. The choice of this topology is due to its simplicity in design and fabrication, relatively broad bandwidth and the presence of a rear ground plane, which minimizes the impacts of the human body on the antenna performance. It is designed on a felt substrate, whereas Aaronia-shield conductive textile is utilized as its conductive parts (radiator, shorting wall and ground plane). The antenna performance are studied in two cases, first in free space and then in bent conditions in the close proximity to the human body. The influence of the relative humidity on the textile antenna performance is also investigated numerically. Simulated and measured results indicated good agreements. Finally, the proposed antenna is integrated with a transceiver module and evaluated on the body in practice. Its wireless link quality is assessed in an indoor laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.