Previously, we have reported that the Jak-Stat signaling pathway is defective in NOD mice. In this study, prediabetic female NOD mice (4 weeks) were treated by intraperitoneal injection either with AG490 or DMSO three times per week for 4 consecutive weeks, followed by once a week for an additional 6 weeks. The onset of diabetes was attenuated in NOD mice treated with AG490 relative to DMSO treated control mice (p < 0.02). From an immunological standpoint, AG490 induced the expression of Foxp3 in CD4(+)CD25(-) T-cells and down-regulated expression of co-stimulatory molecules in dendritic cells (DC) both in vitro and in vivo. AG490 treated CD4+CD25- T-cells and DC in vitro, acquired regulatory functions; namely, the ability to suppress proliferation of a responding cell population in vitro. AG490 treatment resulted in significant reduction of blood glucose values and increased expression of PPARγ in splenocytes and markedly increased expression PPARγ2 but not PPARγ1 in adipocyte in vitro. Presence of multiple Stat5 DNA binding consensus sequences within the promoter region of the PPARγ gene in human and in mouse suggests that PPARγ is downstream to the Jak-Stat signaling pathway. This study highlights a critical role of the Jak-Stat signaling pathway in the pathogenesis of T1D and suggests that blocking the Jak-Stat signaling pathway by AG490 as a tyrosine kinase inhibitor may provide an effective means for preventing autoimmune T1D via both immunological and metabolic effects.
Aim: Immunogenicity risk assessment assays are powerful tools that assess the relative immunogenicity of potential biotherapeutics. We detail here the development of a novel assay that measures the degree of antibody internalization by antigen-presenting cells as a predictor of immunogenicity. Results & methodology: The assay uses the fluorescence signal from the antibody bound to the outside of the cell as well as inside the cell to determine internalization. To calculate the amount of internalized antibody, the fluorescent signal from the outside was subtracted from the fluorescent signal from the inside, which is referred to as the internalization index. Conclusion: This assay format demonstrated that antibody-based biotherapeutics with higher clinical immunogenicity internalized to a higher degree than therapeutic antibodies with lower clinical immunogenicity.
Tyrosine kinase inhibitors (TKi) hold promise as a treatment for a variety of disorders ranging from those in oncology to diseases thought immune mediated. Tyrphostin AG490 is a potent Jak-Stat TKi shown effective in the prevention of allograft transplant rejection, experimental autoimmune disease, as well as the treatment of cancer. However, given its ability to modulate this important but pleiotropic intracellular pathway, we thought it is important to examine its effects on glucose metabolism and expression of major transcription factors and adipokines associated with insulin insensitivity and diabetes. We investigated the metabolic effects of AG490 on glucose levels in vivo using an animal model of diabetes, non-obese diabetic (NOD) mice, and transcription factor expression through assessment of human adipocytes. AG490 treatment of young non-diabetic NOD mice significantly reduced blood glucose levels (p=0.002). In vitro, treatment of adipocytes with rosiglitazone, an insulin sensitizer that binds to PPAR receptors and increases the adipocyte response to insulin, significantly increased the expression of the anti-diabetic adipokine adiponectin. Importantly, the combination of rosiglitazone plus Tyrphostin AG490 further increased this effect, and was specifically associated with significant upregulation of C/EBP (p<0.0001). In terms of the mechanism underlying this action, regulatory regions of the PPARγ, ADIPOQ and C/EBP contain the Stat5 DNA binding sequences and were demonstrated, by gel shift experiments in vitro. These data suggest that blocking Jak-Stat signaling with AG490 reduces blood glucose levels and modulates the expression of transcription factors previously associated with diabetes, thereby supporting its potential as a therapy for this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.