Background: Nowadays more than half of the populations in the world are suffering from dandruff. Malassezia fungus is an important factor in causing dandruff as it may stimulate cytokine production by keratinocytes (epidermal cells that synthesize keratin) and inflammatory pathways. As dandruff is a hurting issue for people, a lot of efforts are being done for treatment. Many reports based on medicinal plants, seem to be more effective in curing mentioned concern. Objectives: The aim of this research was to investigate a clinical trial for dandruff therapy by Zinc L-pyrrolidone carboxylic acid (Zinc-PCA) and pirocton olamine in combination with six medicinal plant extracts. Patients and Methods: In this study, the combination of Punica granatum L, Rosmarinus officinalis L, Matricaria chamomilla L, Urtica dioica L, Mentha piperita L., and Salvia officinalis L. methanolic extracts with Pirocton Olamine and Zinc-PCA in the shampoo form were tested on 30 patients with dandruff on hair within a period of two months. Chronic dandruff of 15 patients were highly removed in the second week, 12 other patients suffering from dandruff were seen with dandruff removal after 28 days, while remaining sufferers expressed satisfaction at the end of the fifth week. Results: Based on the results, medicinal plant extracts have marvelous effects on dandruff removal with fewer side effects, though it takes long time to treat the mentioned concern. Conclusions: The results show that applying the combination of medicinal plant extracts and natural ingredients with chemical compounds in pharmaceutical industry can optimize treatment.
: Clinical application of vincristine sulfate as a chemotherapeutic agent is limited because of its low aqueous solubility and severe side effects. This study aimed to improve the bioavailability and reduce side effects of vincristine sulfate through entrapping in PEGylated niosomes. We evaluated the anticancer activity of PEGylated niosomal vincristine sulfate (PEG-nVCR) in a mouse model of lymphoma induced by BCL1 clone 5B1b cell line. PEG-nVCR was prepared by the thin-film hydration method. The prepared niosomes were characterized by size, zeta potential, and entrapment efficiency. The drug release pattern, neurotoxicity experiment, and in vivo anticancer activity of PEG-nVCR were evaluated by the dialysis diffusion method, rotarod performance test, and flow cytometry, respectively. The mean particle size, zeta potential, and entrapment efficiency of nisomes were obtained around 220 nm, -19 mV, and 81%, respectively. A sustained release behavior was indicated by PEG-nVCR so that the maximum release of VCR from niosomes reached to 69% after 36h of incubation. After the treatment of mice by different formulations, a significant reduction in lymphoma cells in the spleen was obtained for the PEG-nVCR, as compared to the free vincristine sulfate. In the neurotoxicity experiment, a 2.5-fold lower motor incoordination effect was observed for the PEG-nVCR group with respect to the free VCR group. According to these findings, it can be concluded that the PEGylated niosomal formulation could be a suitable carrier for the delivery of VCR to the lymphoma cells or other related cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.