In this paper, AE signals collected during fatigue crack-growth of aluminum and titanium alloys (Al7075-T6 and Ti-6Al-4V) were analyzed and compared. Both the aluminum and titanium alloys used in this study are prevalent materials in aerospace structures, which prompted this current investigation. The effect of different loading conditions and loading frequencies on a proposed AE-based crack-growth model were studied. The results suggest that the linear model used to relate AE and crack growth is independent of the loading condition and loading frequency. Also, the model initially developed for the aluminum alloy proves to hold true for the titanium alloy while, as expected, the model parameters are material dependent. The model parameters and their distributions were estimated using a Bayesian regression technique. The proposed model was developed and validated based on post processing and Bayesian analysis of experimental data.
Abstract:One of the major concerns in structural health management (SHM) is the early detection of a growing crack. Using this, future damage due to crack propagation can be mitigated or eliminated by implementing proper repair and maintenance. Acoustic Emission (AE) is a non-destructive testing (NDT) method with potential applications for locating and monitoring fatigue cracks. The research presented in this paper focuses on SHM using AE. A novel AE signal analysis approach was proposed in order to detect crack initiation and assess small crack lengths. Experimental investigation indicated that initiation of a crack could be identified through the statistical analysis of the resulting features of the AE signals. A probabilistic AE-based model for small fatigue crack sizing was developed and the uncertainties of the model were estimated. In addition, a probabilistic model validation approach was implemented to confirm accurate estimation of the results. The outcome of this research can be used to evaluate the integrity of structures under fatigue loading. The proposed approach can also be applied as an approach to manage health and assess prognosis of structures.
The 5083 and 6061(T6) aluminum (Al) alloys are widely used in transportation industries and the development of structural designs because of their high toughness and high corrosion resistance. Friction stir welding (FSW) was performed to produce the dissimilar welded joint of Al5083-Al 6061(T6) under different welding parameters. However, softening behavior occurred in the friction stir welded (FSWed) samples because of grain coarsening or the dissolution of precipitation-hardening phases in the welding zone. Consequently, this research intended to investigate the effect of the post-weld heat treatment (PWHT) method on the mechanical property improvement of the dissimilar FSWed Al5083-Al6061(T6) and governing abnormal grain growth (AGG) through different welding parameters. The results showed PWHT enhanced the mechanical properties of dissimilar joints of Al5083-Al6061(T6). AGG was obtained in the microstructure of PWHTed joints, but appropriate PWHT could recover the dissolved precipitation-hardening particle in the heat-affected zone of the as-welded joint. Further, the tensile strength of the dissimilar joint increased from 181 MPa in the as-welded joint to 270 MPa in the PWHTed joint, showing 93% welding efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.