SummaryThe hematopoietic system seeds the CNS with microglial progenitor cells during the fetal period, but the subsequent cell generation dynamics and maintenance of this population have been poorly understood. We report that microglia, unlike most other hematopoietic lineages, renew slowly at a median rate of 28% per year, and some microglia last for more than two decades. Furthermore, we find no evidence for the existence of a substantial population of quiescent long-lived cells, meaning that the microglia population in the human brain is sustained by continuous slow turnover throughout adult life.
Thymic involution and proliferation of naive T cells both contribute to shaping the naive T-cell repertoire as humans age, but a clear understanding of the roles of each throughout a human life span has been difficult to determine. By measuring nuclear bomb test–derived 14C in genomic DNA, we determined the turnover rates of CD4+ and CD8+ naive T-cell populations and defined their dynamics in healthy individuals ranging from 20 to 65 years of age. We demonstrate that naive T-cell generation decreases with age because of a combination of declining peripheral division and thymic production during adulthood. Concomitant decline in T-cell loss compensates for decreased generation rates. We investigated putative mechanisms underlying age-related changes in homeostatic regulation of CD4+ naive T-cell turnover, using mass cytometry to profile candidate signaling pathways involved in T-cell activation and proliferation relative to CD31 expression, a marker of thymic proximity for the CD4+ naive T-cell population. We show that basal nuclear factor κB (NF-κB) phosphorylation positively correlated with CD31 expression and thus is decreased in peripherally expanded naive T-cell clones. Functionally, we found that NF-κB signaling was essential for naive T-cell proliferation to the homeostatic growth factor interleukin (IL)-7, and reduced NF-κB phosphorylation in CD4+CD31− naive T cells is linked to reduced homeostatic proliferation potential. Our results reveal an age-related decline in naive T-cell turnover as a putative regulator of naive T-cell diversity and identify a molecular pathway that restricts proliferation of peripherally expanded naive T-cell clones that accumulate with age.
Thymic involution and proliferation of naive T cells both contribute to shaping the naive T cell repertoire as humans age, but a clear understanding of the roles of each throughout a human lifespan has been difficult to determine. By measuring nuclear bomb test-derived 14 C in genomic DNA we determined the turnover rates of CD4 + and CD8 + naïve T cell populations and defined their dynamics in healthy individuals ranging from 20-65 years of age. We demonstrate that naïve T cell generation decreases with age, and that this could be explained by a combination of declining cell loss, peripheral division and thymic production during adulthood. We investigated putative mechanisms underlying age-related changes in homeostatic regulation of naïve T cell turnover using mass cytometry to profile candidate signaling pathways involved in T cell activation and proliferation in CD4 + naive T cells relative to CD31 expression, a marker of thymic proximity. We show that basal NF-kB phosphorylation inversely correlated with CD31 expression and thus is decreased in peripherally expanded naive T cell clones. Functionally we found that NF-kB signaling was essential for naive T cell proliferation to the homeostatic growth factor IL-7, and reduced NF-kB phosphorylation in CD4 + CD31naive T cells is linked to reduced homeostatic proliferation potential. Our results reveal an age-related decline in naïve T cell turnover as a putative regulator of naïve T cell diversity and identify a molecular pathway that restricts proliferation of peripherally expanded naive T cell clones that accumulate with age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.