A variety of biological activities, such as anti-microbial and anti-tumor properties was reported for 1,10-phenanthroline and its copper complexes. In this study, the anti-proliferative activity of a novel [Cu(L)(phen)] complex was investigated on MCF-7 breast cancer cells using MTT assay. Since chemotherapy is lake of ability to distinguish between normal cells from cancerous cells, therefore we also investigated the effect of [Cu(L)(phen)] complex on normal L929 cells. The results showed that following 24 and 48 h exposure of cells with [Cu(L)(phen)] complex, the IC50 values for MCF-7 were significantly lower than that recorded for L929 and normal cells were less sensitive than cancerous cells to the complex. Additionally, the [Cu(L)(phen)] complex displayed a time- and concentration-dependent cytotoxic response, with MCF-7 and L929 cells. Also flow cytometry findings suggest that [Cu(L)(phen)] complex is capable of decreasing cancer cell viability through apoptosis and did not efficiently activate the necrosis process.
Recent advances have put fundamental focus on the application of copper (II) (Cu [II]) complexes as agents for fighting against cancer. To determine whether [Cu(L)(2imi)] complex as a novel Cu complex can induce apoptosis in HepG2 as cancerous cells and L929 as normal cells via extrinsic or intrinsic apoptotic pathways, both cell lines were treated for 24 and 48 hours at IC 50 concentrations of [Cu(L)(2imi)] complex. Then, the expression of some apoptosis-related genes including p53, caspase-8, bcl-2, and bax were assayed by real-time polymerase chain reaction. The [Cu(L)(2imi)] complex seems to inhibit the expression of bcl-2 in complex-treated HepG2 cancerous cells following the 24-and 48-hour treatment. The complex upregulated the p53, bax, and caspase-8 genes, therefore treatment of HepG2 cancerous cells with [Cu(L)(2imi)] complex induces programmed cell death via the upregulation of relative bax/bcl-2 ratio. Finally, this copper complex triggered apoptosis in HepG2 cells via both intrinsic and extrinsic pathway, whereas treatment of normal L929 cells with this complex induce apoptosis only via intrinsic pathway with the upregulation of relative bax/bcl-2 ratio and does not affect the expression level of caspase-8 gene and does not trigger the extrinsic pathway. Finally, these results obtained from present study confirm the role of a novel Cu complex on the induction of apoptosis process in HepG2 and L929 cells by overexpression of bax, inhibition of bcl-2 and increase of the relative bax/bcl-2 ratio. These results support that the [Cu(L)(2imi)] complex is able to induce apoptosis in cancerous cells, therefore, it has a potential for development as a novel anticancer drug. K E Y W O R D S bax, bcl-2, caspase-8, [Cu(L)(2imi)] complex, hepatocellular carcinoma, p53
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.