Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.
In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure–function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters the global phase behavior and organization of transcription components within condensates. Coarse-grained simulations of mesoscale structures at equilibrium show that the components stably assemble into multiphasic condensates and that the vesicles formed in vitro are the result of dynamical arrest. Overall, our findings illustrate the complex phase behavior of transcribing, multicomponent condensates, and they highlight the intimate, bidirectional interplay of structure and function in transcriptional condensates.
Phase separation organizes many membraneless structures in cells. The functional consequences of concentrating cellular machinery into biomolecular condensates, however, is largely unclear. Here, we use in vitro reconstitutions, in vivo studies, and computational modelling to uncover structure-function relationships of mitochondrial (mt-) transcriptional condensates. In vitro, we find that the core mt-transcription machinery — consisting of POLRMT, TFAM, TFB2M, and DNA — forms viscoelastic, multi-phasic condensates. Strikingly, the rates of condensate-mediated transcription are considerably lower than equivalent reactions in bulk solution. Dampened rates are associated with reduced diffusivities of components that become kinetically arrested in non-equilibrium, vesicular condensates. Perturbation of mt-components in vivo and computational simulations recapitulate the transcription-dependent reorganizations observed in vitro. Our findings demonstrate close, bidirectional interdependence between structure and function of transcriptional condensates.
The intricate process of human mtDNA replication requires the coordinated action of both transcription and replication machineries. Transcription and replication events at the lagging strand of mtDNA prompt the formation of a stem-loop structure (OriL) and the synthesis of a $ 25 nt RNA primer by mitochondrial RNA polymerase (mtRNAP). The mechanisms by which mtRNAP recognizes OriL, initiates transcription, and transfers the primer to the replisome are poorly understood. We found that transcription initiation at OriL involves slippage of the nascent transcript. The transcript slippage is essential for initiation complex stability and its ability to translocate the mitochondrial DNA polymerase gamma, PolG, which pre-binds to OriL, downstream of the replication origin thus allowing for the primer synthesis. Our data suggest the primosome assembly at OriL-a complex of mtRNAP and PolG-can efficiently generate the primer, transfer it to the replisome, and protect it from degradation by mitochondrial endonucleases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.