Effects of Artificial Neural Networks Characterization on Prediction of Diesel Engine Emissions Azadeh Tehranian More than a century after its invention, diesel remains the fuel of choice for buses and freight trucks. Diesel exhaust contains three gases that are regulated by the United States Environmental Protection Agency (EPA), as well as particulate matter (PM). There is a societal need both to lower emissions and to predict or model emissions more accurately for inventory purposes. Engine modeling, and real time control are the most indispensable steps towards lowering engine emissions, and it is argued that this modeling can be achieved by implementation of Artificial Neural Networks (ANN). Effects of ANN design, architecture, and learning parameters on the accuracy of emissions predictions were studied along with the variation of embedded activation functions. An optimization strategy was followed to attain the most suitable network in the defined framework for five emissions of NO x , PM, HC, CO, and CO 2. The emissions data were obtained from five engine transient test schedules, namely the E-CSHVR, ETC, FTP, E-Highway and E-WVU-5 Peak schedules. These were performed on a 550 hp General Electric DC engine dynamometer-testing unit at the West Virginia University Alternative Fuels, Engine and Emissions Research Center. The 3-Layer and Jump Connection networks were the most promising architectures and it was found that the radial basis functions such as the Gaussian and Gaussian Complement functions outperform the sigmoidal functions in all of the examined architectures. The accuracy of an excellent typical instance of CO 2 prediction was as good as 0.009% error of accumulated value over the course of a FTP cycle. DEDICATION To Afsaneh, for her profound empathy, To Nick and Roya, for their remarkable nobility, To Nasser, for his exclusive sincerity. iii WBP Weight associated with back propagation algorithm ŷ ANN prediction of variable y xxii 157 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.