Recently, we demonstrated that intrahippocampal infusion of the cyclo-oxygenase (COX)-2-specific inhibitor celecoxib impaired spatial memory retention in the Morris water maze. In the present work, we investigated the effects of nicotine, infused in the rat dorsal hippocampus several minutes after infusion of celecoxib, on memory retention in the Morris water maze. Rats were trained for 3 days; each day included two blocks, and each block contained four trials. Test trials were conducted 48 h after surgery. As expected, bilateral intrahippocampal infusion of celecoxib (19 lg/side; 0.1 M) increased escape latency and travel distance in rats, indicating significant impairment of spatial memory retention. We also examined the effects of bilateral infusion of nicotine (0.5, 1.0 and 2.0 lg/side) on memory retention. Infusion of 1 lg nicotine significantly decreased escape latency and travel distance but not swimming speed, compared with controls, suggesting memory retention enhancement by nicotine at this concentration. In separate experiments, bilateral infusion of nicotine, infused 5 min after 0.1 M (19 lg/side) celecoxib infusion, was associated with escape latency, travel distance and swimming speed profiles very similar to those in control animals. Brain tissue sections from several of these animals were subjected to immunohistochemical staining analysis with anti-COX-2 antibodies. Quantification analysis by optical density measurements showed that the celecoxib infusion reduced the immunoreactivity of COX-2-containing neurons in the CA1 area of the hippocampus compared with controls, although this reduction was not significant. However, infusion of a combination of celecoxib and nicotine significantly increased this immunoreactivity compared with levels in control and celecoxib-infused groups. These results suggest that nicotine prevented or reversed the adverse effects of celecoxib on spatial memory retention and protected or restored the immunostaining pattern of COX-2 neurons in the rat dorsal hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.