In the present work, electrospinnability as well as thermal, rheological, and morphological characteristics of low molecular weight hardwood organosolv lignin, as a potential precursor for carbon fiber, was investigated. Submicromter biobased fibers were electrospun from a wide range of polymer solutions with different ratios of organosolv lignin to polyacrylonitrile (PAN). Rheological studies were conducted by measuring viscosity, surface tension, and electrical conductivity of hybrid polymer solutions, and used to correlate electrospinning behavior of solutions with the morphology of the resultant electrospun composite fibers. Using scanning electron microscopy (SEM) images, the solutions that led to the formation of bead-free uniform fibers were found. Differential scanning calorimetry (DSC) analysis revealed that lignin-based fibers enjoy higher decomposition temperatures than that of pure PAN. Thermal stability of the lignin-based fibers was investigated by thermogravimetric analysis (TGA) indicating a high carbon yield of above 50% at 600°C, which is highly crucial in the production of low-cost carbon fiber. It was also observed that organosolv lignin synergistically affects thermal decomposition of composite fibers. A significant lower activation energy was found for the pyrolysis of lignin-derived electrospun fibers compared to that of pure PAN.
The polymorphism and crystallinity of poly(vinylidene fluoride) (PVDF) membranes, made from electrospinning of the PVDF in pure N,N-dimethylformamide (DMF) and DMF/acetone mixture solutions are studied. Influence of the processing and solution parameters such as flow rate, applied voltage, solvent system, and mixture ratio, on nanofiber morphology, total crystallinity, and crystal phase content of the nanofibers are investigated using scanning electron microscopy, wide-angle X-ray scattering, differential scanning calorimetric, and Fourier transform infrared spectroscopy. The results show that solutions of 20% w/w PVDF in two solvent systems of DMF and DMF/acetone (with volume ratios of 3/1 and 1/1) are electrospinnable; however, using DMF/acetone volume ratio of 1/3 led to blockage of the needle and spinning process was stopped. Very high fraction of b-phase (79%-85%) was obtained for investigated nanofiber, while degree of crystallinity increased to 59% which is quite high due to the strong influence of electrospinning on ordering the microstructure. Interestingly, ultrafine fibers with the diameter of 12 and 15 nm were obtained in this work. Uniform and bead free nanofiber was formed when a certain amount of acetone was added in to the electrospinning solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.