Sentiment Analysis (SA) is a domain- or topic-dependent task since polarity terms convey different sentiments in various domains. Hence, machine learning models trained on a specific domain cannot be employed in other domains, and existing domain-independent lexicons cannot correctly recognize the polarity of domain-specific polarity terms. Conventional approaches of Topic Sentiment Analysis perform Topic Modeling (TM) and SA sequentially, utilizing the previously trained models on irrelevant datasets for classifying sentiments that cannot provide acceptable accuracy. However, some researchers perform TM and SA simultaneously using topic-sentiment joint models, which require a list of seeds and their sentiments from widely used domain-independent lexicons. As a result, these methods cannot find the polarity of domain-specific terms correctly. This paper proposes a novel supervised hybrid TSA approach, called Embedding Topic Sentiment Analysis using Deep Neural Networks (ETSANet), that extracts the semantic relationships between the hidden topics and the training dataset using Semantically Topic-Related Documents Finder (STRDF). STRDF discovers those training documents in the same context as the topic based on the semantic relationships between the Semantic Topic Vector, a newly introduced concept that encompasses the semantic aspects of a topic, and the training dataset. Then, a hybrid CNN–GRU model is trained by these semantically topic-related documents. Moreover, a hybrid metaheuristic method utilizing Grey Wolf Optimization and Whale Optimization Algorithm is employed to fine-tune the hyperparameters of the CNN–GRU network. The evaluation results demonstrate that ETSANet increases the accuracy of the state-of-the-art methods by 1.92%.
The exponentially increasing amount of data generated by the public on social media platforms is a precious source of information. It can be used to find the topics and analyze the comments. Some researchers have extended the Latent Dirichlet Allocation (LDA) method by adding a sentiment layer to simultaneously find the topics and their related sentiments. However, most of these approaches do not achieve admirable accuracy in Topic Sentiment Analysis (TSA), particularly when there is insufficient training data or the texts are complex, ambiguous, and short. In this paper, a self-supervised novel approach called SSTSA is proposed for TSA that extracts the hidden topics and analyzes the total sentiment related to each topic. The SSTSA proposes a new method called Pseudo-label Generator. For this purpose, first, it employs semantic similarity and Word Mover’s Distance (WMD) measures. Then, the document embedding technique is employed to semantically estimate the sentiment orientation of samples and generate the pseudo-labels (positive or negative). Afterward, a hybrid classifier composed of a pre-trained Robustly Optimized BERT (RoBERTa) and a Long Short-Term Memory (LSTM) model is trained to predict the sentiment of unseen data. The evaluation results on different datasets of various domains demonstrate that the SSTSA outperforms similar unsupervised/self-supervised methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.