Background Liver fibrosis is a chronic liver disease with excessive production of extracellular matrix proteins, leading to cirrhosis, hepatocellular carcinoma, and death. Purpose This study aimed at the development of a novel derivative of polyethyleneimine (PEI) that can effectively deliver transforming growth factor β (TGFβ) siRNA and inhibit chemokine receptor 4 (CXCR4) for TGFβ silencing and CXCR4 Inhibition, respectively, to treat CCl 4 -induced liver fibrosis in a mouse model. Methods Cyclam-modified PEI (PEI-Cyclam) was synthesized by incorporating cyclam moiety into PEI by nucleophilic substitution reaction. Gel electrophoresis confirmed the PEI-Cyclam polyplex formation and stability against RNAase and serum degradation. Transmission electron microscopy and zeta sizer were employed for the morphology, particle size, and zeta potential, respectively. The gene silencing and CXCR4 targeting abilities of PEI-Cyclam polyplex were evaluated by luciferase and CXCR4 redistribution assays, respectively. The histological and immunohistochemical staining determined the anti-fibrotic activity of PEI-Cyclam polyplex. The TGFβ silencing of PEI-Cyclam polyplex was authenticated by Western blotting. Results The 1 H NMR of PEI-Cyclam exhibited successful incorporation of cyclam content onto PEI. The PEI-Cyclam polyplex displayed spherical morphology, positive surface charge, and stability against RNAse and serum degradation. Cyclam modification decreased the cytotoxicity and demonstrated CXCR4 antagonistic and luciferase gene silencing efficiency. PEI-Cyclam/siTGFβ polyplexes decreased inflammation, collagen deposition, apoptosis, and cell proliferation, thus ameliorating liver fibrosis. Also, PEI-Cyclam/siTGFβ polyplex significantly downregulated α-smooth muscle actin, TGFβ, and collagen type III. Conclusion Our findings validate the feasibility of using PEI-Cyclam as a siRNA delivery vector for simultaneous TGFβ siRNA delivery and CXCR4 inhibition for the combined anti-fibrotic effects in a setting of CCl 4 -induced liver fibrosis.
In the present study, we describe various pharmacological effects and computational analysis of nepetolide, a tricyclic clerodane-type diterpene, isolated from . Nepetolide concentration-dependently (1.0-1000 µg/mL) exhibited 1,1-diphenyl,2-picrylhydrazyl free radical scavenging activity with maximum effect of 87.01 ± 1.85%, indicating its antioxidant potential, as shown by standard drug, ascorbic acid. It was moderately active against bacterial strain of. In brine shrimp's lethality model, nepetolide potently showed cytotoxic effect, with LC value of 8.7 µg/mL. When evaluated for antitumor activity in potato disc tumor assay, nepetolide exerted tumor inhibitory effect of 56.5 ± 1.5% at maximum tested concentration of 1000 µg/mL. Nepetolide at 20 mg/kg reduced carrageenan-induced inflammation (P < .001 vs. saline group) in rat paw. Nepetolide dose-dependently (100-500 mg/kg) decreased acetic acid evoked writhes, as exhibited by diclofenac sodium. investigation of nepetolide was carried out against cyclooxygenase-2, epidermal growth factor receptor and lipoxygenase-2 targets. Virtual screening through Patchdock online docking server identified primarily hydrophobic interactions between ligand nepetolide and receptors proteins. Enhanced hydrogen bonding was predicted with Autodock showing 6-8 hydrogen bonds per target. These results indicate that nepetolide exhibits antioxidant, antibacterial, cytotoxic, anticancer, anti-inflammatory and analgesic activities and should be considered as a lead compound for developing drugs for the remedy of oxidative stress-induced disorders, microbial infections, cancers, inflammations and pain.
Background Glioma is one of the most fatal types of malignant tumours, the cause of which is mostly unknown. Orphan GPCRs (GPRs) have been previously implicated in tumour growth and metastasis. Therefore, these GPRs could prove to be alternative and promising therapeutic targets for cancer treatment. Objective The role of GPR160 in glioma has not yet been assessed. This study aims to explore the association of GPR160 with glioma progression and investigate its role in epithelial‐to‐mesenchymal transition (EMT) and metastasis. Methods Changes in protein expression were assessed using western blot analysis and immunofluorescent staining assays, while mRNA expression changes were evaluated using qRT‐PCR. To detect the changes in progression and metastasis, MTT, EdU proliferation, wound healing, transwell migration, and flow cytometry assays were carried out in vitro. An epithelial to mesenchymal phenotypic analysis was performed to detect EMT. Results We demonstrated that knockdown of GPR160 inhibited proliferation, colony formation, and cell viability and promoted apoptosis. Pro‐apoptotic biomarkers were upregulated, while anti‐apoptotic biomarkers were downregulated. Cell lines with GPR160 knockdown (GPR160 KD) showed a slowed migration rate and decreased invasion ability. EMT mesenchymal biomarkers were downregulated in GPR160 KD cell lines, while epithelial biomarkers were upregulated. Conclusion This study provides evidence that GPR160 is a potential therapeutic target in glioma for the first time. These findings can be used to discover in detail the molecular mechanism and pathways through which GPR160 promotes glioma progression.
The authors have advised there is an error in the author list on page 4451. The text "Muhammad Usman, 6 " should read "Muhammad Usman, 8 ".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.