In this work, the effective parameters of the scaled particle theory (SPT) are used as the input to the artificial neural network (ANN) to calculate as the output, the solubility (mole fraction of gas in liquid phase) of non-polar gases in polar and non-polar solvents at 298.15 K and 101.325 kPa. It has been found that ANN used in this work should has five neurons in the hidden layer to achieve the least error. The results of ANN have been compared with the experimental values. The results of this comparison are quite satisfactory. The average relative deviations of the simulations in training and testing stages have been calculated 0.92% and 0.89%, respectively. Finally, the results of ANN were compared with the results of SPT. According to this comparison, it is clear that SPT as a thermodynamic model predicts the solubility of the studied gases in the solvents with the same accuracy of ANN which is a purely mathematical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.