In this paper, we present the results of dispersion of thermodynamically immiscible polypropylene (PP) and ethylene-propylene triple synthetic rubber (EPTSR) polymer blends using the Solution-Enhanced Dispersion by Supercritical Fluid (SEDS) technique at operation conditions in the pressure range of (8 to 25) MPa and at temperatures t = 40 °C and 60 °C. The kinetics of crystallization and phase transformation in polymer blends obtained by conventional method (melt blending) and by mixing in the SEDS process have been studied using the DSC technique. The effects of the SEDS operation process on the physical—chemical (melting temperature, heat of fusion) and mechanical (microparticle size) characteristics of the SEDS-produced polymer blends were studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.