Context: Inadequate penetration of the blood-brain barrier (BBB) by systemically administered chemotherapies including carboplatin is implicated in their failure to improve prognosis for patients with glioblastoma. Convection-enhanced delivery (CED) of carboplatin has the potential to improve outcomes by facilitating bypass of the BBB.Objective: We report the first use of an implantable CED system incorporating a novel transcutaneous bone-anchored port (TBAP) for intermittent CED of carboplatin in a patient with recurrent glioblastoma.Materials and methods: The CED catheter system was implanted using a robot-assisted surgical method. Catheter targeting accuracy was verified by performing intra-operative O-arm imaging. The TBAP was implanted using a skin-flap dermatome technique modeled on bone-anchored hearing aid surgery. Repeated infusions were performed by attaching a needle administration set to the TBAP. Drug distribution was monitored with serial real-time T2-weighted magnetic resonance imaging (MRI).Results: All catheters were implanted to within 1.5 mm of their planned target. Intermittent infusions of carboplatin were performed on three consecutive days and repeated after one month without the need for further surgical intervention. Infused volumes of 27.9 ml per day were well tolerated, with the exception of a single seizure episode. Follow-up MRI at eight weeks demonstrated a significant reduction in the volume of tumor enhancement from 42.6 ml to 24.6 ml, and was associated with stability of the patient's clinical condition.Conclusion: Reduction in the volume of tumor enhancement indicates that intermittent CED of carboplatin has the potential to improve outcomes in glioblastoma. The novel technology described in this report make intermittent CED infusion regimes an achievable treatment strategy.
We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas.
Breast cancer patients with diabetes respond less well to chemotherapy; in keeping with this we determined previously that hyperglycaemia-induced chemoresistance in estrogen receptor (ERa) positive breast cancer cells and showed that this was mediated by fatty acid synthase (FASN). More recent evidence suggests that the effect of metabolic syndrome and diabetes is not the same for all subtypes of breast cancer with inferior disease-free survival and worse overall survival only found in women with ERa positive breast cancer and not for other subtypes. Here we examined the impact of hyperglycaemia on ERa negative breast cancer cells and further investigated the mechanism underlying chemoresistance in ERa with a view to identifying strategies to alleviate hyperglycaemia-induced chemoresistance. We found that hyperglycaemia-induced chemoresistance was only observed in ERa breast cancer cells and was dependent upon the expression of ERa as chemoresistance was negated when the ERa was silenced. Hyperglycaemia-induced an increase in activation and nuclear localisation of the ERa that was downstream of FASN and dependent on the activation of MAPK. We found that fulvestrant successfully negated the hyperglycaemia-induced chemoresistance, whereas tamoxifen had no effect. In summary our data suggests that the ERa may be a predictive marker of poor response to chemotherapy in breast cancer patients with diabetes. It further indicates that anti-estrogens could be an effective adjuvant to chemotherapy in such patients and indicates the importance for the personalised management of breast cancer patients with diabetes highlighting the need for clinical trials of tailored chemotherapy for diabetic patients diagnosed with ERa positive breast cancers.
NEURO-ONCOLOGY • JUNE 2017 confer resistance. RESULTS: Altered expression of the anti-apoptosis pathway, cell cycle activation and PI3-kinase signaling, in addition to several lineage-specific transcription factors, rescued MYC-amplified cells from BET-bromodomain inhibition. Cell-lines that had acquired resistance to BET-bromodomain inhibitors exhibited altered cell-state and increased expression of candidate resistance proteins. These lines were resistant to structurally distinct BET-bromodomain inhibitors, and whole-exome sequencing did not reveal mutations in BRD2, BRD3 or BRD4. Resistant cell-lines were sensitive to inhibitors targeting candidate resistance drivers. CONCLUSIONS: MYC-amplified medulloblastoma cell-lines evolve to increase expression of candidate resistant pathways to acquire resistance to BET-bromodomain inhibition. These represent potential therapeutic targets for combination therapies to increase the clinical efficacy of BET-bromodomain inhibitors for children with MYCamplified medulloblastoma. TRTH-16.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.