Well-defined ultrathin MoS2 nanoplates are developed by a facile solvent-dependent control route from single-source precursor for the first time. The obtained ultrathin nanoplate with a thickness of ~ 5 nm features high density of basal edges and abundant unsaturated active S atoms. The multistage growth process is investigated and the formation mechanism is proposed. Ultrathin MoS2 nanoplates exhibit an excellent activity for hydrogen evolution reaction (HER) with a small onset potential of 0.09 V, a low Tafel slope of 53 mV dec(-1), and remarkable stability. This work successfully demonstrates that the introduction of unsaturated active S atoms into ultrathin MoS2 nanoplates for enhanced electrocatalytic properties is feasible through a facial one-step solvent control method, and that this may open up a potential way for designing more efficient MoS2-based catalysts for HER.
A novel electrocatalyst of layered MoS2 supported on reduced graphene oxide (RGO) decorated with nano-sized tungsten carbide (WC) shows an enhanced catalytic performance in the hydrogen evolution reaction, which could be attributed to the presence of a conductive and electrocatalytically-active nano-WC dispersant and the positive synergistic effect between nano-WC/RGO and layered MoS2.
Lithium metal batteries (LMBs) have aroused extensive interest in the field of energy storage owing to the ultrahigh anode capacity. However, strong solvation of Li + and slow interfacial ion transfer associated with conventional electrolytes limit their long-cycle and high-rate capabilities. Herein an electrolyte system based on fluoroalkyl ether 2,2,2-trifluoroethyl-1,1,2,3,3,3-hexafluoropropyl ether (THE) and ether electrolytes is designed to effectively upgrade the long-cycle and high-rate performances of LMBs. THE owns large adsorption energy with ether-based solvents, thus reducing Li + interaction and solvation in ether electrolytes. With THE rich in fluoroalkyl groups adjacent to oxygen atoms, the electrolyte owns ultrahigh polarity, enabling solvation-free Li + transfer with a substantially decreased energy barrier and ten times enhancement in Li + transference at the electrolyte/anode interface. In addition, the uniform adsorption of fluorine-rich THE on the anode and subsequent LiF formation suppress dendrite formation and stabilize the solid electrolyte interphase layer. With the electrolyte, the lithium metal battery with a LiFePO 4 cathode delivers unprecedented cyclic performances with only 0.0012% capacity loss per cycle over 5000 cycles at 10 C. Such enhancement is consistently observed for LMBs with other mainstream electrodes including LiCoO 2 and LiNi 0.5 Mn 0.3 Co 0.2 O 2 , suggesting the generality of the electrolyte design for battery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.