In recent years, the amount of intelligent CCTV cameras installed in public places for surveillance has increased enormously and as a result, a large amount of video data is produced every moment. Due to this situation, there is an increasing request for the distributed processing of large-scale video data. In an intelligent video analytics platform, a submitted unstructured video undergoes through several multidisciplinary algorithms with the aim of extracting insights and making them searchable and understandable for both human and machine. Video analytics have applications ranging from surveillance to video content management. In this context, various industrial and scholarly solutions exist. However, most of the existing solutions rely on a traditional client/server framework to perform face and object recognition while lacking the support for more complex application scenarios. Furthermore, these frameworks are rarely handled in a scalable manner using distributed computing. Besides, existing works do not provide any support for low-level distributed video processing APIs (Application Programming Interfaces). They also failed to address a complete service-oriented ecosystem to meet the growing demands of consumers, researchers and developers. In order to overcome these issues, in this paper, we propose a distributed video analytics framework for intelligent video surveillance known as SIAT. The proposed framework is able to process both the real-time video streams and batch video analytics. Each real-time stream also corresponds to batch processing data. Hence, this work correlates with the symmetry concept. Furthermore, we introduce a distributed video processing library on top of Spark. SIAT exploits state-of-the-art distributed computing technologies with the aim to ensure scalability, effectiveness and fault-tolerance. Lastly, we implant and evaluate our proposed framework with the goal to authenticate our claims.
The world is facing a pandemic due to the coronavirus disease 2019 (COVID-19), named as per the World Health Organization. COVID-19 is caused by the virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was initially discovered in late December 2019 in Wuhan, China. Later, the virus had spread throughout the world within a few months. COVID-19 has become a global health crisis because millions of people worldwide are affected by this fatal virus. Fever, dry cough, and gastrointestinal problems are the most common signs of COVID-19. The disease is highly contagious, and affected people can easily spread the virus to those with whom they have close contact. Thus, contact tracing is a suitable solution to prevent the virus from spreading. The method of identifying all persons with whom a COVID-19-affected patient has come into contact in the last 2 weeks is called contact tracing. This study presents an investigation of a convolutional neural network (CNN), which makes the test faster and more reliable, to detect COVID-19 from chest X-ray (CXR) images. Because there are many studies in this field, the designed model focuses on increasing the accuracy level and uses a transfer learning approach and a custom model. Pretrained deep CNN models, such as VGG16, InceptionV3, MobileNetV2, and ResNet50, have been used for deep feature extraction. The performance measurement in this study was based on classification accuracy. The results of this study indicate that deep learning can recognize SARS-CoV-2 from CXR images. The designed model provided 93% accuracy and 98% validation accuracy, and the pretrained customized models such as MobileNetV2 obtained 97% accuracy, InceptionV3 obtained 98%, and VGG16 obtained 98% accuracy, respectively. Among these models, InceptionV3 has recorded the highest accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.