Rice blast is a serious fungal disease of rice (Oryza sativa L.) that is threatening global food security. It has been extensively studied due to the importance of rice production and consumption, and because of its vast distribution and destructiveness across the world. Rice blast, caused by Pyricularia oryzae Cavara 1892 (A), can infect aboveground tissues of rice plants at any growth stage and cause total crop failure. The pathogen produces lesions on leaves (leaf blast), leaf collars (collar blast), culms, culm nodes, panicle neck nodes (neck rot), and panicles (panicle blast), which vary in color and shape depending on varietal resistance, environmental conditions, and age. Understanding how rice blast is affected by environmental conditions at the cellular and genetic level will provide critical insight into incidence of the disease in future climates for effective decision-making and management. Integrative strategies are required for successful control of rice blast, including chemical use, biocontrol, selection of advanced breeding lines and cultivars with resistance genes, investigating genetic diversity and virulence of the pathogen, forecasting and mapping distribution of the disease and pathogen races, and examining the role of wild rice and weeds in rice blast epidemics. These tactics should be integrated with agronomic practices including the removal of crop residues to decrease pathogen survival, crop and land rotations, avoiding broadcast planting and double cropping, water management, and removal of yield-limiting factors for rice production. Such an approach, where chemical use is based on crop injury and estimated yield and economic losses, is fundamental for the sustainable control of rice blast to improve rice production for global food security.
Nitrogen (N) fertilizers are needed to enhance maize (Zea mays L.) production. Maize plays a major role in the livestock industry, biofuels, and human nutrition. Globally, less than one-half of applied N is recovered by maize. Although the application of N fertilizer can improve maize yield, excess N application due to low knowledge of the mechanisms of nitrogen use efficiency (NUE) poses serious threats to environmental sustainability. Increased environmental consciousness and an ever-increasing human population necessitate improved N utilization strategies in maize production. Enhanced understanding of the relationship between maize growth and productivity and the dynamics of maize N recovery are of major significance. A better understanding of the metabolic and genetic control of N acquisition and remobilization during vegetative and reproductive phases are important to improve maize productivity and to avoid excessive use of N fertilizers. Synchronizing the N supply with maize N demand throughout the growing season is key to improving NUE and reducing N loss to the environment. This review examines the mechanisms of N use in maize to provide a basis for driving innovations to improve NUE and reduce risks of negative environmental impacts.
Nitrogen is a key factor in maize (Zea mays L.) grain and biomass production. Inappropriate application with sub-optimum plant density and irrigation can lead to low productivity and inefficient use. A two-year field experiment was conducted to determine which nitrogen rate, plant density, and irrigation level optimize grain, biomass yield, and water use efficiency. Three nitrogen rates of urea (46–0–0 of N–P2O5–K2O) (N0 = 0 kg N ha−1, N1 = 270 kg N ha−1, and N2 = 360 kg N ha−1), with three maize densities (D1 = 75,000 plants ha−1, D2 = 97,500 plants ha−1, and D3 = 120,000 plants ha−1), and two irrigation levels (W1 = 5250 m3/hm2 and W2 = 4740 m3/hm2) were investigated. The results show that both grain and biomass yields were affected by the main factors. The interaction between nitrogen rate and irrigation level significantly (p < 0.001) affected grain yield but not biomass. It was observed that the grain yield increased correspondingly with nitrogen rate and plant density, while it decreased as the irrigation level increased. Water use efficiency was significantly (p < 0.001) affected by the main factors and their interactions. Nevertheless, water use efficiency was highest at (5250 m3/hm2) × 270 kg N ha−1; × 360 kg N ha−1 × 120,000 plants ha−1 and increased from 62% to 68%. In addition, the highest biomass yield was recorded at 5250 m3/hm2 × 270 kg N ha−1; × 360 kg N ha−1 × 120,000 plants ha−1 while the interaction of either irrigation level with 0 and 270 kg ha−1 or 97,500 and 120,000 plants ha−1 yielded the lowest water use efficiency. Thus, optimized nitrogen rates, plant density, and alternate irrigation levels can support optimum grain and biomass yields. It can also improve nitrogen and water use efficiency in maize production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.