The objective of this study is to induce experimental diabetes mellitus by Streptozotocin in normal adult
Fungi are employed to produce industrially important glucoamylases. Most glucoamylases are glycosylated. Glycosylation enhances the enzyme stability. Glucoamylases contain both starch binding and catalytic binding domains, the former being responsible for activity on raw (insoluble) starch. Proteases may act on this domain causing the enzyme to lose its activity on insoluble starch. Optimal activity is observed at pH 4.5 to 6.5 and 50 to 70 degrees C. Glucoamylases contain up to 7 sub-sites with highly varying affinity. They can be produced by different methods including submerged, solid state and semi-solid state fermentation processes.
This study aims to evaluate the potency of cisplatin (Cispt)-loaded liposome (LCispt) and PEGylated liposome (PLCispt) as therapeutic nanoformulations in the treatment of bladder cancer (BC). Cispt was loaded into liposomes using reverse-phase evaporation method, and the formulations were characterized using dynamic light scattering, scanning electron microscopy, dialysis membrane, and Fourier-transform infrared spectroscopy (FTIR) methods. The results showed that the particles were formed in spherical monodispersed shapes with a nanoscale size (221–274 nm) and controlled drug release profile. The cytotoxicity effects of LCispt and PLCispt were assessed in an in vitro environment, and the results demonstrated that PLCispt caused a 2.4- and 1.9-fold increase in the cytotoxicity effects of Cispt after 24 and 48 h, respectively. The therapeutic and toxicity effects of the formulations were also assessed on BC-bearing rats. The results showed that PLCispt caused a 4.8-fold increase in the drug efficacy (tumor volume of 11 ± 0.5 and 2.3 ± 0.1 mm3 in Cispt and PLCispt receiver rats, respectively) and a 3.3-fold decrease in the toxicity effects of the drug (bodyweight gains of 3% and 10% in Cispt and PLCispt receiver rats, respectively). The results of toxicity were also confirmed by histopathological studies. Overall, this study suggests that the PEGylation of LCispt is a promising approach to achieve a nanoformulation with enhanced anticancer effects and reduced toxicity compared to Cispt for the treatment of BC.
In traditional medicine, Eucalyptus globulus (eucalyptus) was used for the treatment of diabetes mellitus. Hyperglycemia in diabetes has been associated with increased formation of reactive oxygen species (ROS) and oxidative damage to tissue compounds. The aim of this study was to evaluate the effects of eucalyptus in the diet (20 g/Kg) and drinking water (2.5 g/L) on lipid peroxidation, protein oxidation and antioxidant power in plasma and liver homogenate, as well as glycated-Hb (HbA(1C)) of blood in streptozotocin-induced diabetic rats for a period of 4 weeks. Diabetes induced in rats by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/Kg). At the end of the treatment period, the level of plasma glucose, plasma and liver malondialdehyde (MDA, the main product of lipid peroxidation), protein carbonyl (PC, one of the protein oxidation products) and HbA(1C) increased and ferric reducing antioxidant power (FRAP) decreased in diabetic rats compared to normal rats. Eucalyptus administration for 4 weeks caused a significant decrease in the plasma glucose levels, plasma and liver MDA, PC and HbA(1C), also a concomitant increase in the levels of FRAP in diabetic treated rats. In conclusion, the present study showed that eucalyptus posses antioxidant activities. Eucalyptus probably restores antioxidant power, due to the improved hyperglycemia in streptozotocin-induced diabetic rats.
Platinum nanoparticles (PNPs) were synthesized by chemical reduction of potassium hexachloroplatinate (IV) with trisodium citrate under vigorous stirring and addition of sodium dodecyl sulfate as stabilizer reagent. Reducing agent was chosen depending on the oxidation reactions and potential values of the chemical materials used in the experiment. The aim of this study is to investigate the effects of PNPs on the different cancer cell lines and cytotoxicity study of this nanomaterial. The morphology of PNPs was investigated by scanning electron microscope (XL30, Philips Electronics, Amsterdam, The Netherlands) with the ability to perform elemental analysis by EDX. Malvern Zetasizer 3000 HSA (Malvern Instruments, Worcestershire, UK) was used to determine the distribution of particle size and zeta potential of PNPs. The cytotoxicity property of the nanoparticles was evaluated by MTT assay on MCF-7 and HepG-2 cell lines, and the cytotoxic concentration 50% values were determined for 24 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.