The development of biomaterials has increased rapidly in order to alter the fate of stem cells and use them in therapeutic applications. Currently, many biomaterials are used in the biomedical industry. Biomaterials act as a “nitch” which is an environment regulating the development and self-renewal behaviour of stem cells. The stem cells receive signals from the “nitch” and proceeds accordingly. In order to control the behaviour of stem cells, the chemical and physical properties of the biomaterial should be taken into consideration. This review paper focuses on the different type of metals used in biomaterials, identifying their current issues and challenges including fatigue, corrosion resistance, and the toxicity caused by metal ions released in the body. It also provides detailed explanations about the impact of various metal implants such as stainless steel, cobalt-chromium, and titanium on stem cells and the toxicity caused by the interaction of biomaterials and various trace elements with the hostile body environment.
Due to superior mechanical and metallurgical performance, Nickel-base Alloys 617 and 276 have been considered as structural material for used in complex and stochastic applications. Surface irregularities such as cracks in the material may be vulnerable to the structural integrity of an engineering component. Void growth behavior is however analyzed using crystal plasticity theory in nickel-based super alloys. Elastic-plastic fracture mechanics base single compact tension specimen has been used to determine the J1C value as a function of temperature of austenitic Alloy 617 and 276 for ductile crack growth behavior. Crack formation is appropriately explained through crack nucleation based on the microstructural heterogeneity properties of the alloys. Alloy 617 showed a fair increased resistance to fracture as temperature increased from ambient to 5000C for duplicate testing, satisfying the EPFM criteria. Whereas the J1C values of Alloy 276 increased gradually with temperature up to 300° C and due to enhanced plasticity in the vicinity of 4000 C this alloy shows inconsistent value. Two-dimensional simulation of J-integral model of these nickel base super alloys at temperature range 1000C to 5000 C has been proposed. Particular focus is given on the load line displacement where crack propagation occurs during the loading phase only. Path independency of J-integral has been clearly demonstrated for both the alloys up to 3000 C employing finite element analysis meshing with 1922 quadrilateral 2D solid elements in ANSYS. Cracks are typically initiated in relation to the level of strain range. A higher strain range initiates cracks due to precipitate shearing, whereas a low strain range initiates cracks with oxidation reactions and carbide diffusion. The values of K1C and crack tip opening displacement for these alloys have been calculated based on the experimental data. Moreover, fracture morphology in the loading and unloading sequences near the crack tip has been analyzed by SEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.