This paper represents the third contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions, information about the pathology, distribution, hosts and disease symptoms for the treated genera, as well as primary and secondary DNA barcodes for the currently accepted species included in these. This third paper in the GOPHY series treats 21 genera of phytopathogenic fungi and their relatives including: Allophoma, Alternaria, Brunneosphaerella, Elsinoe, Exserohilum, Neosetophoma, Neostagonospora, Nothophoma, Parastagonospora, Phaeosphaeriopsis, Pleiocarpon, Pyrenophora, Ramichloridium, Seifertia, Seiridium, Septoriella, Setophoma, Stagonosporopsis, Stemphylium, Tubakia and Zasmidium. This study includes three new genera, 42 new species, 23 new combinations, four new names, and three typifications of older names.
This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.
Colletotrichum spp. are important pathogens of citrus that cause dieback of branches and postharvest disease. Globally, several species of Colletotrichum have been identified as causing anthracnose of citrus. One hundred and sixty-eight Colletotrichum isolates were collected from anthracnose symptoms on citrus stems, leaves, and fruit from Victoria, New South Wales, and Queensland, and from State herbaria in Australia. Colletotrichum australianum sp. nov., C. fructicola, C. gloeosporioides, C. karstii, C. siamense, and C. theobromicola were identified using multi-gene phylogenetic analyses based on seven genomic loci (ITS, gapdh, act, tub2, ApMat, gs, and chs-1) in the gloeosporioides complex and five genomic loci (ITS, tub2, act, chs-1, and his3) in the boninense complex, as well as morphological characters. Several isolates pathogenic to chili (Capsicum annuum), previously identified as C. queenslandicum, formed a clade with the citrus isolates described here as C. australianum sp. nov. The spore shape and culture characteristics of the chili and citrus isolates of C. australianum were similar and differed from those of C. queenslandicum. This is the first report of C. theobromicola isolated from citrus and the first detection of C. karstii and C. siamense associated with citrus anthracnose in Australia.
Pyrethrum (Tanacetum cinerariifolium) is commercially cultivated for the extraction of natural pyrethrin insecticides from the oil glands inside seed. Yield decline has caused significant yield losses in Tasmania during the last decade. A new pathogen of pyrethrum causing crown rot and reduced growth of the plants in yield decline affected fields of northern Tasmania was isolated from necrotic crown tissue and described as Paraphoma vinacea. Multigene phylogenetic identification of the pathogen also revealed that P. vinacea was a new species different from other Paraphoma type strains. Glasshouse pathogenicity experiments showed that P. vinacea significantly reduced belowground and total biomass of pyrethrum plants 2 months after inoculation. Dull-tan to reddish-brown discoloration of the cortical and subcortical crown tissue was observed in 100% of the infected plants. P. vinacea infected 75% of the plants inoculated with root dip and soil drench inoculation techniques in an inoculation optimization experiment. P. vinacea, the causal agent of Paraphoma crown rot disease, represents an important pathogen that will negatively impact the commercial cultivation of pyrethrum in Tasmania.
Fusarium species were isolated from roots, crowns, basal petioles but rarely from the leaves of infected pyrethrum (Tanacetum cinerariifolium) plants showing poor growth and stunting in yield-decline sites of northern Tasmania and the Ballarat region of Victoria, Australia. Multigene phylogenetic analyses using the internal transcribed spacer (ITS), the polymerase II second largest subunit (RPB2) and the partial translation elongation factor 1-α (EF1) sequences, identified F. oxysporum and F. avenaceum as the most frequently isolated species associated with root and crown diseases of pyrethrum, and F. equiseti and F. venenatum at a low incidence. Pathogenicity trials confirmed that F. oxysporum and F. avenaceum significantly affected growth of pyrethrum plants causing Fusarium crown rot; however, F. avenaceum was less pathogenic than F. oxysporum. Fusarium oxysporum and F. avenaceum may be part of a complex of pathogens that are involved in pyrethrum yielddecline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.