Palmitoylcarnitine was oxidised by pea mitochondria.L-carnitine was an essential addition for the oxidation of palmitate or palmitoylCoA. When palmitate was sole substrate, ATP and Mg(2+) were also essential additives for maximum oxidation. Additions of CoA inhibited the oxidation of palmitate. It was shown that CoA was acting as a competitive inhibitor of the carnitine-stimulated O2 uptake. It is suggested that palmitoylacarnitine and carnitine passed through the mitochondrial barrier with ease but palmitoylCoA and CoA did not. The presence of carnitine long-chain acyl (palmitoyl)transferase (EC 2.3.1.21) in pea-cotyledon mitochondria was shown. This enzyme may play a role in the transport of long-chain acyl groups through membrane barriers.
Carnitine acetyltransferase was shown to be present in pea-cotyledon mitochondria. Acetyl-carnitine may well be exported, without excessive energy loss, from mitochondrial matrix sites to extra-mitochondrial sites.
CoASH, Mg(2+), ATP and (-)-carnitine were found to be essential for the production of palmitoylcarnitine from palmitate by purified barley etio-chloroplasts. It was concluded that long-chain acyl CoA synthetase (palmitoyl CoA synthetase, EC 6.2.1.3) and carnitine long-chain acyl-transferase (carnitine palmitoyltransferase, EC 2.3.1.21) activity were present in the etio-chloroplasts. It is suggested that the long-chain acylcarnitine formed may move more easily through membrane barriers than the long-chain acyl CoA compound. Also or alternatively this enzyme may spare CoA by transferring long-chain acyl groups from long-chain acyl CoA to carnitine.
Etio-chloroplasts of barley, purified on sucrose density gradients were shown to possess carnitine long-chain acyltransferase (carnitine palmitoyltransferase, EC 2.3.1.21) activity and carnitine short-chain acyltransferase (carnitine acetyltransferase EC 2.3.1.7) activity. These enzymes may play a role in the transport of acyl groups as acylcarnitines through the membrane barrier of barley etio-chloroplasts and also 'or alternatively' may spare CoA by transferring short- and long-chain acyl groups from short-and long-chain acyl CoA to carnitine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.