In this study, a comprehensive numerical simulation was done to investigate the electrokinetic translocation of cfDNA molecule as well as the possibility of its detection and separation in insulator based dielectrophoresis (iDEP) systems. Modeling was done for the first time by solving the Poisson equation for the electrical potential, Naiver-Stokes (NS) equation for the fluid flow and energy equation for the heat transfer in the system and considering a coarse-grained bead-spring model to describe the conformational and geometrical changes of cfDNA molecule. The effect of the geometrical parameters of the system, the initial orientation of the molecule, electrical conductivity of the solution and zeta potential of the wall was investigated on the translocation and the minimum voltage required for cfDNA trapping. When the ratio of the inlet height to the constriction zone height is large enough, cfDNA cannot pass through the nanopore and trap in the constriction zone. Also, It was found that the electrical conductivity of the solution is a limiting parameter to directly isolate cfDNA from pure plasma without dilution due to significant increase in the temperature of the system. Our results demonstrate the enormous potential of iDEP systems for rapid detection of cfDNA from diluted plasma under special electrical potential and geometrical parameters of the iDEP systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.