We report on the controversial dependence of the inertial correction to Darcy’s law upon the filtration velocity (or Reynolds number) for one-phase Newtonian incompressible flow in model porous media. Our analysis is performed on the basis of an upscaled form of the Navier-Stokes equation requiring the solution of both the micro-scale flow and the associated closure problem. It is carried out with a special focus on the different regimes of inertia (weak and strong inertia) and the crossover between these regimes versus flow orientation and structural parameters, namely porosity and disorder. For ordered structures, it is shown that (i) the tensor involved in the expression of the correction is generally not symmetric, despite the isotropic feature of the permeability tensor. This is in accordance with the fact that the extra force due to inertia exerted on the structure is not pure drag in the general case; (ii) the Forchheimer type of correction (which strictly depends on the square of the filtration velocity) is an approximation that does not hold at all for particular orientations of the pressure gradient with respect to the axes of the structure; and (iii) the weak inertia regime always exists as predicted by theoretical developments. When structural disorder is introduced, this work shows that (i) the quadratic dependence of the correction upon the filtration velocity is very robust over a wide range of the Reynolds number in the strong inertia regime; (ii) the Reynolds number interval corresponding to weak inertia, that is always present, is strongly reduced in comparison to ordered structures. In conjunction with its relatively small magnitude, it explains why this weak inertia regime is most of the time overlooked during experiments on natural media. In all cases, the Forchheimer correction implies that the permeability is different from the intrinsic one.International audienceWe report on the controversial dependence of the inertial correction to Darcy’s law upon the filtration velocity (or Reynolds number) for one-phase Newtonian incompressible flow in model porous media. Our analysis is performed on the basis of an upscaled form of the Navier-Stokes equation requiring the solution of both the micro-scale flow and the associated closure problem. It is carried out with a special focus on the different regimes of inertia (weak and strong inertia) and the crossover between these regimes versus flow orientation and structural parameters, namely porosity and disorder. For ordered structures, it is shown that (i) the tensor involved in the expression of the correction is generally not symmetric, despite the isotropic feature of the permeability tensor. This is in accordance with the fact that the extra force due to inertia exerted on the structure is not pure drag in the general case; (ii) the Forchheimer type of correction (which strictly depends on the square of the filtration velocity) is an approximation that does not hold at all for particular orientations of the pressure gradient with respect to the ax...
[1] In this paper, a numerical procedure is proposed to calculate effective properties associated with the generalized two-equation model developed by Ahmadi et al. [1998]. A transformation of the original closure problems was found that allowed the introduction of a finite volume formulation. Results are presented for a heterogeneous porous medium made up of nodules embedded in a continuous matrix. The properties of the effective parameters are discussed in terms of the influence of the Péclet number, the permeability ratio, and the local-scale dispersivity. In addition, the problem of the asymptotic behavior of the two-equation model is discussed in some details. Finally, a comparison is made with results available from the literature in simplified cases.
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.