The study of the identity processes of women of color in science-based fields helps us (a) find ways to support similar women, and (b) study the dynamics of inequity, within and beyond science. Participants in this study (a Black woman, a Latina, and an American Indian woman) survived inadequate high schools and discouraging college science departments to win formal recognition (fellowships, publications). Using multiracial feminist theory, including intersectionality, and practice theory, we conceptualize authoring of identity as an ongoing process. Qualitative methods were designed around Black feminist precepts of caring and personal accountability, the use of concrete experience and of dialogue (Collins, 2000a). Participants' opportunities to author legitimate science identities were constrained by their location in the matrix of oppression. They reported conflicts between their identities as women of color and as credible science students, and having racist, sexist identities ascribed to them. All became more adept at fending off negative ascription and all found settings with less identity conflict; their ability to read a situation and quickly adjust, la facultad (Anzaldúa,
Introduction Particulate matter (PM), specifically nickel (Ni) found on or in PM, has been associated with an increased risk of mortality in human population studies and significant increases in vascular inflammation, generation of reactive oxygen species, altered vasomotor tone, and potentiated atherosclerosis in murine exposures. Recently, murine inhalation of Ni nanoparticles have been shown to cause pulmonary inflammation which affects cardiovascular tissue and potentiates atherosclerosis. These adverse cardiovascular outcomes may be due to the effects of Ni on endothelial progenitor cells (EPCs), endogenous semi-pluripotent stem cells that aid in endothelial repair. Thus, we hypothesize that Ni nanoparticle exposures decrease cell count and cause impairments in function which may ultimately have significant effects on various cardiovascular diseases such as atherosclerosis. Methods Experiments involving inhaled Ni nanoparticle exposures(2 days/5 hrs/day at ~1000 μg/m3, 3 days/5 hrs/day at ~1000 μg/m3, and 5days/5 hrs/day at ~100 μg/m3), were performed in order to quantify bone marrow resident EPCs using flow cytometry in C57BL/6 mice. Plasma levels of SDF-1α and VEGF were assessed by ELISA and in vitro functional assessments of cultured EPCs were conducted. Results and Conclusions Significant EPC count differences between exposure and control groups for Ni nanoparticle exposures were observed. Differences in EPC tube formation and chemotaxis were also observed for the Ni nanoparticle exposed group. Plasma VEGF and SDF-1α differences were not statistically significant. In conclusion, this study shows that inhalation of Ni nanoparticles results in functionally impaired EPCs and reduced number in the bone marrow, which may lead to enhanced progression of atherosclerosis.
Background The use of nanoparticles (NPs) in technological applications is rapidly expanding, but the potential health effects associated with NP exposure are still largely unknown. Given epidemiological evidence indicating an association between inhaled ambient ultrafine particles and increased risk of cardiovascular disease morbidity and mortality, it has been suggested that exposure to NPs via inhalation may induce similar cardiovascular responses. Methods Male C57BL/6 mice were exposed via whole-body inhalation to either filtered air (FA) or nickel hydroxide (NH) NPs (100, 150, or 900 μg/m3) for 1, 3, or 5 consecutive days (5 h/day). At 24-h post-exposure, vascular function in response to a vasoconstrictor, phenylephrine (PE), and a vasodilator, acetylcholine (ACh), was measured in the carotid artery. Results Carotid arteries from mice exposed to all concentrations of NH-NPs showed statistically significant differences in graded doses of PE-induced contractile responses compared with those from FA mice. Similarly, vessels from NH-NP-exposed mice also demonstrated impaired vasorelaxation following graded doses of ACh as compared with FA mice. Conclusions These results suggest that short-term exposure to NH-NPs can induce acute endothelial disruption and alter vasoconstriction and vasorelaxation. These findings are consistent with other studies assessing vascular tone and function in the aorta, coronary, and mesenteric vessels from mice exposed to motor vehicular exhaust and concentrated ambient particles.
Introduction The discovery of endothelial progenitor cells (EPCs) may help to explain observed cardiovascular effects associated with inhaled nickel nanoparticle exposures such as increases in vascular inflammation, generate reactive oxygen species, alter vasomotor tone, and potentiated atherosclerosis in murine species. Methods Following an acute whole body inhalation exposure to 500μg/m3 of nickel nanoparticles for 5 hrs, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation, and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells (CEPCs), circulating endothelial cells (CECs), and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the exposure. Results and Conclusions Acute exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation (CEPCs). CECs were significantly elevated indicating that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. These results coincided with a decrease in the mRNA of receptors involved in EPC mobilization and homing. This data provides new insight into how an acute nickel nanoparticle exposure to half of the current Occupational Safety & Health Administration permissible exposure limit may adversely affect EPCs.
Background: Over 20 genetic risk factors have been confirmed to associate with elevated risk for Alzheimer’s disease (AD), but the identification of environmental and/or acquired risk factors has been more elusive. At present, recognized acquired risks for AD include traumatic brain injury, hypercholesterolemia, obesity, hypertension, and type 2 diabetes. Methods: Based on reports associating various inhalants with AD pathology, we investigated the possibility that air pollution might contribute to AD risk by exposing wild-type mice to a standard air pollution modeling system employing nickel nanoparticle-enriched atmosphere for 3 hr. Results: Mice exposed to air pollution showed 72-129% increases in brain levels of both amyloid-β peptides Aβ40 and Aβ42, as well as Aβ42/40 (p <0.01). Conclusions: These effects on elevation of brain Aβ exceed those associated with trisomy 21, a known risk for early onset AD pathology, raising the possibility that clinical importance might be attached. Further work is required to establish the molecular and physiological basis for these phenomena. The rapid, dramatic effect, if verified, would suggest that inhalant exposures should be evaluated for their possible roles in contributing to the environmental risk for common forms of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.