Introduction Positron emission tomography (PET) is suggested for early monitoring of treatment response, assuming that effective anticancer treatment induces metabolic changes that precede morphology alterations and changes in growth. The aim of this study was to introduce multicellular tumour spheroids (MTS) to study the effect of anticancer drugs and suggest an appropriate PET tracer for further studies.
Background: In previous clinical Positron Emission Tomography (PET) studies novel approaches for application of Principal Component Analysis (PCA) on dynamic PET images such as Masked Volume Wise PCA (MVW-PCA) have been introduced. MVW-PCA was shown to be a feasible multivariate analysis technique, which, without modeling assumptions, could extract and separate organs and tissues with different kinetic behaviors into different principal components (MVW-PCs) and improve the image quality.
Three11 C-radiolabelled high-affinity nonpeptide AT 2 receptor-selective ligands were synthesized and one of these was evaluated as positron emission tomography (PET) tracer. The labelling reaction was performed via palladium(0)-mediated aminocarbonylation of the aryl iodide substrate using [11 C]carbon monoxide as the labelled precursor. As an example, starting with 10.0 GBq [ 11 C]carbon monoxide, 1.10 GBq of the product11 C]4d was obtained in 36% decay-corrected radiochemical yield (from [ 11 C]carbon monoxide), 42 min from end of bombardment with a specific activity of 110 GBq Á lmol
À1. The N-isopropyl-11 C]4c (radiochemical purity 495%) was studied employing autoradiography, organ distribution, and small animal PET. In vitro autoradiography showed specific binding in the pancreas and kidney. Organ distribution in six rats revealed a high uptake in the liver, intestine, kidney, and adrenals. Small animal PET showed rapid and reversible uptake in the kidneys followed by accumulation in the urinary bladder suggesting fast renal excretion of the tracer. In addition, high accumulation was also seen in the liver. For future studies, more metabolically stable tracers will need to be developed. To the best of our knowledge, this is the first attempt of the use of PET imaging for the detection of expressed, fully functional AT 2 receptors in living subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.