Ferroquine (SSR97193), a ferrocene-quinoline conjugate, is a promising novel antimalarial currently undergoing clinical evaluation. This study characterizes its pharmacokinetic properties. Young male African volunteers with asymptomatic Plasmodium falciparum infection were administered a single oral dose (n ؍ 40) or a repeated oral dose (n ؍ 26) given over 3 days of ferroquine in two dose-escalation, double-blind, randomized, placebo-controlled clinical trials. In addition, a food interaction study was performed in a subsample of participants (n ؍ 16). The studies were carried out in Lambaréné, Gabon. After single-dose administration of ferroquine, dose linearity was demonstrated in a dose range of 400 to 1,200 mg for maximum mean blood concentrations ([C max ] 82 to 270 ng/ml) and in a dose range of 400 to 1,600 mg for overall exposure to ferroquine (area under the concentration-time curve [AUC], 13,100 to 49,200 ng · h/ml). Overall mean estimate for blood apparent terminal half-life of ferroquine was 16 days and 31 days for its active and major metabolite desmethylferroquine (SSR97213). In the 3-day repeated-dose study, C max and overall cumulated exposure to ferroquine (AUC cum ) increased in proportion with the dose from day 1 to day 3 between 400 and 800 mg. No major food effect on ferroquine pharmacokinetics was observed after single administration of 100 mg of ferroquine except for a slight delay of time to maximum blood concentration (t max ) by approximately 3 h. The pharmacokinetics of ferroquine and its active main metabolite are characterized by sustained levels in blood, and the properties of ferroquine as a partner drug in antimalarial combination therapy should be evaluated.
Thiocolchicoside (TCC) has been prescribed for several years as a muscle relaxant drug, but its pharmacokinetic (PK) profile and metabolism still remain largely unknown. Therefore, we re-investigated its metabolism and PK, and we assessed the muscle relaxant properties of its metabolites. After oral administration of 8 mg (a therapeutic dose) of 14C-labelled TCC to healthy volunteers, we found no detectable TCC in plasma, urine or faeces. On the other hand, the aglycone derivative obtained after de-glycosylation of TCC (M2) was observed and, in addition, we identified, as the major circulating metabolic entity, 3-O-glucuronidated aglycone (M1) obtained after glucuro-conjugation of M2. One hour after oral administration, M1 plus M2 accounted for more than 75% of the circulating total radioactivity. The pharmacological activity of these metabolites was assessed using a rat model, the muscle relaxant activity of M1 was similar to that of TCC whereas M2 was devoid of any activity. Subsequently, to investigate the PK profile of TCC in human PK studies, we developed and validated a specific bioanalytical method that combines liquid chromatography and ultraviolet detection to assay both active entities. After oral administration, TCC was not quantifiable with an lower limit of quantification set at 1 ng/mL, whereas its active metabolite M1 was detected. M1 appeared rapidly in plasma (tmax=1 h) and was eliminated with an apparent terminal half-life of 7.3 h. In contrast, after intramuscular administration both active entities (TCC and M1) were present; TCC was rapidly absorbed (tmax=0.4 h) and eliminated with an apparent terminal half-life of 1.5 h. M1 concentration peaked at 5 h and this metabolite was eliminated with an apparent terminal half-life of 8.6 h. As TCC and M1 present an equipotent pharmacological activity, the relative oral pharmacological bioavailability of TCC vs. intramuscular administration was calculated and represented 25%. Therefore, to correctly investigate the PK and bioequivalence of TCC, the biological samples obtained must be assayed with a bioanalytical method able to specifically analyse TCC and its active metabolite M1.
Intake of AQ and AS with a high fat meal resulted in (1) a statistically significant increase in blood levels of AQ and DSA which may affect the safety and tolerability of the study drugs and (2) a decrease in AS and DHA blood levels which may affect efficacy. These results suggest that the fixed-dose combination should not be administered with a high-fat meal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.